Reid, Mark D.

19 publications

NeurIPS 2016 Causal Bandits: Learning Good Interventions via Causal Inference Finnian Lattimore, Tor Lattimore, Mark D. Reid
JMLR 2016 Composite Multiclass Losses Robert C. Williamson, Elodie Vernet, Mark D. Reid
NeurIPS 2015 Convergence Analysis of Prediction Markets via Randomized Subspace Descent Rafael Frongillo, Mark D. Reid
JMLR 2015 Fast Rates in Statistical and Online Learning Tim van Erven, Peter D. Grünwald, Nishant A. Mehta, Mark D. Reid, Robert C. Williamson
COLT 2015 Generalized Mixability via Entropic Duality Mark D. Reid, Rafael M. Frongillo, Robert C. Williamson, Nishant A. Mehta
MLJ 2014 An Improved Multiclass LogitBoost Using Adaptive-One-vs-One Peng Sun, Mark D. Reid, Jie Zhou
ICML 2012 AOSO-LogitBoost: Adaptive One-vs-One LogitBoost for Multi-Class Problem Peng Sun, Mark D. Reid, Jie Zhou
NeurIPS 2012 Interpreting Prediction Markets: A Stochastic Approach Rafael M. Frongillo, Nicolas Della Penna, Mark D. Reid
JMLR 2012 Mixability Is Bayes Risk Curvature Relative to Log Loss Tim van Erven, Mark D. Reid, Robert C. Williamson
NeurIPS 2012 Mixability in Statistical Learning Tim V. Erven, Peter Grünwald, Mark D. Reid, Robert C. Williamson
ICML 2012 The Convexity and Design of Composite Multiclass Losses Mark D. Reid, Robert C. Williamson, Peng Sun
ICML 2012 Tighter Variational Representations of F-Divergences via Restriction to Probability Measures Avraham Ruderman, Mark D. Reid, Dario García-García, James Petterson
NeurIPS 2011 Composite Multiclass Losses Elodie Vernet, Mark D. Reid, Robert C. Williamson
JMLR 2011 Information, Divergence and Risk for Binary Experiments Mark D. Reid, Robert C. Williamson
COLT 2011 Mixability Is Bayes Risk Curvature Relative to Log Loss Tim Erven, Mark D. Reid, Robert C. Williamson
JMLR 2010 Composite Binary Losses Mark D. Reid, Robert C. Williamson
COLT 2009 Generalised Pinsker Inequalities Mark D. Reid, Robert C. Williamson
ICML 2009 Surrogate Regret Bounds for Proper Losses Mark D. Reid, Robert C. Williamson
ICML 2000 Learning to Fly: An Application of Hierarchical Reinforcement Learning Malcolm Ryan, Mark D. Reid