Ren, Mengye

36 publications

ICML 2025 A General Framework for Inference-Time Scaling and Steering of Diffusion Models Raghav Singhal, Zachary Horvitz, Ryan Teehan, Mengye Ren, Zhou Yu, Kathleen Mckeown, Rajesh Ranganath
ICML 2025 Are LLMs Prescient? a Continuous Evaluation Using Daily News as the Oracle Hui Dai, Ryan Teehan, Mengye Ren
ICLR 2025 PooDLe🐩: Pooled and Dense Self-Supervised Learning from Naturalistic Videos Alex N Wang, Christopher Hoang, Yuwen Xiong, Yann LeCun, Mengye Ren
NeurIPSW 2024 Are LLMs Prescient? a Continuous Evaluation Using Daily News as the Oracle Hui Dai, Ryan Teehan, Mengye Ren
CoLLAs 2024 Integrating Present and past in Unsupervised Continual Learning Yipeng Zhang, Laurent Charlin, Richard Zemel, Mengye Ren
ICML 2024 Learning and Forgetting Unsafe Examples in Large Language Models Jiachen Zhao, Zhun Deng, David Madras, James Zou, Mengye Ren
ECCV 2024 ProCreate, Don't Reproduce! Propulsive Energy Diffusion for Creative Generation Jack Lu, Ryan Teehan, Mengye Ren
NeurIPS 2024 Reawakening Knowledge: Anticipatory Recovery from Catastrophic Interference via Structured Training Yanlai Yang, Matt Jones, Michael C. Mozer, Mengye Ren
ICLR 2023 Learning in Temporally Structured Environments Matt Jones, Tyler R. Scott, Mengye Ren, Gamaleldin Fathy Elsayed, Katherine Hermann, David Mayo, Michael Curtis Mozer
ICLR 2023 Scaling Forward Gradient with Local Losses Mengye Ren, Simon Kornblith, Renjie Liao, Geoffrey Hinton
CVPR 2023 Towards Unsupervised Object Detection from LiDAR Point Clouds Lunjun Zhang, Anqi Joyce Yang, Yuwen Xiong, Sergio Casas, Bin Yang, Mengye Ren, Raquel Urtasun
ECCV 2022 Rethinking Closed-Loop Training for Autonomous Driving Chris Zhang, Runsheng Guo, Wenyuan Zeng, Yuwen Xiong, Binbin Dai, Rui Hu, Mengye Ren, Raquel Urtasun
CVPR 2021 AdvSim: Generating Safety-Critical Scenarios for Self-Driving Vehicles Jingkang Wang, Ava Pun, James Tu, Sivabalan Manivasagam, Abbas Sadat, Sergio Casas, Mengye Ren, Raquel Urtasun
ICCV 2021 Adversarial Attacks on Multi-Agent Communication James Tu, Tsunhsuan Wang, Jingkang Wang, Sivabalan Manivasagam, Mengye Ren, Raquel Urtasun
CoRL 2021 Exploring Adversarial Robustness of Multi-Sensor Perception Systems in Self Driving James Tu, Huichen Li, Xinchen Yan, Mengye Ren, Yun Chen, Ming Liang, Eilyan Bitar, Ersin Yumer, Raquel Urtasun
CoRL 2021 Just Label What You Need: Fine-Grained Active Selection for P&P Through Partially Labeled Scenes Sean Segal, Nishanth Kumar, Sergio Casas, Wenyuan Zeng, Mengye Ren, Jingkang Wang, Raquel Urtasun
CVPR 2021 SceneGen: Learning to Generate Realistic Traffic Scenes Shuhan Tan, Kelvin Wong, Shenlong Wang, Sivabalan Manivasagam, Mengye Ren, Raquel Urtasun
ICCV 2021 Self-Supervised Representation Learning from Flow Equivariance Yuwen Xiong, Mengye Ren, Wenyuan Zeng, Raquel Urtasun
ICML 2021 SketchEmbedNet: Learning Novel Concepts by Imitating Drawings Alexander Wang, Mengye Ren, Richard Zemel
ICLR 2021 Theoretical Bounds on Estimation Error for Meta-Learning James Lucas, Mengye Ren, Irene Raissa KAMENI Kameni, Toniann Pitassi, Richard Zemel
ICLR 2021 Wandering Within a World: Online Contextualized Few-Shot Learning Mengye Ren, Michael Louis Iuzzolino, Michael Curtis Mozer, Richard Zemel
CoRL 2020 Learning to Communicate and Correct Pose Errors Nicholas Vadivelu, Mengye Ren, James Tu, Jingkang Wang, Raquel Urtasun
NeurIPS 2020 LoCo: Local Contrastive Representation Learning Yuwen Xiong, Mengye Ren, Raquel Urtasun
ICML 2020 Multi-Agent Routing Value Iteration Network Quinlan Sykora, Mengye Ren, Raquel Urtasun
ECCV 2020 Perceive, Predict, and Plan: Safe Motion Planning Through Interpretable Semantic Representations Abbas Sadat, Sergio Casas, Mengye Ren, Xinyu Wu, Pranaab Dhawan, Raquel Urtasun
ICMLW 2020 Wandering Within a World: Online Contextualized Few-Shot Learning Mengye Ren, Michael L. Iuzzolino, Michael C. Mozer, Richard S. Zemel
ICLR 2019 Graph HyperNetworks for Neural Architecture Search Chris Zhang, Mengye Ren, Raquel Urtasun
CoRL 2019 Identifying Unknown Instances for Autonomous Driving Kelvin Wong, Shenlong Wang, Mengye Ren, Ming Liang, Raquel Urtasun
NeurIPS 2019 Incremental Few-Shot Learning with Attention Attractor Networks Mengye Ren, Renjie Liao, Ethan Fetaya, Richard Zemel
ICML 2018 Learning to Reweight Examples for Robust Deep Learning Mengye Ren, Wenyuan Zeng, Bin Yang, Raquel Urtasun
ICLR 2018 Meta-Learning for Semi-Supervised Few-Shot Classification Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell, Kevin Swersky, Joshua B. Tenenbaum, Hugo Larochelle, Richard S. Zemel
ICLR 2018 Understanding Short-Horizon Bias in Stochastic Meta-Optimization Yuhuai Wu, Mengye Ren, Renjie Liao, Roger Grosse.
CVPR 2017 End-to-End Instance Segmentation with Recurrent Attention Mengye Ren, Richard S. Zemel
ICLR 2017 Normalizing the Normalizers: Comparing and Extending Network Normalization Schemes Mengye Ren, Renjie Liao, Raquel Urtasun, Fabian H. Sinz, Richard S. Zemel
NeurIPS 2017 The Reversible Residual Network: Backpropagation Without Storing Activations Aidan N Gomez, Mengye Ren, Raquel Urtasun, Roger B Grosse
NeurIPS 2015 Exploring Models and Data for Image Question Answering Mengye Ren, Ryan Kiros, Richard Zemel