ML Anthology
Authors
Search
About
Ribeiro, Alejandro
55 publications
ICML
2025
A Manifold Perspective on the Statistical Generalization of Graph Neural Networks
Zhiyang Wang
,
Juan Cervino
,
Alejandro Ribeiro
NeurIPS
2025
Alignment of Large Language Models with Constrained Learning
Botong Zhang
,
Shuo Li
,
Ignacio Hounie
,
Osbert Bastani
,
Dongsheng Ding
,
Alejandro Ribeiro
NeurIPS
2025
Composition and Alignment of Diffusion Models Using Constrained Learning
Shervin Khalafi
,
Ignacio Hounie
,
Dongsheng Ding
,
Alejandro Ribeiro
AAAI
2025
Deterministic Policy Gradient Primal-Dual Methods for Continuous-Space Constrained MDPs
Sergio Rozada
,
Dongsheng Ding
,
Antonio G. Marques
,
Alejandro Ribeiro
CoRL
2025
Distilling On-Device Language Models for Robot Planning with Minimal Human Intervention
Zachary Ravichandran
,
Ignacio Hounie
,
Fernando Cladera
,
Alejandro Ribeiro
,
George J. Pappas
,
Vijay Kumar
AISTATS
2025
Feasible Learning
Juan Ramirez
,
Ignacio Hounie
,
Juan Elenter
,
Jose Gallego-Posada
,
Meraj Hashemizadeh
,
Alejandro Ribeiro
,
Simon Lacoste-Julien
ICML
2025
GIVE: Structured Reasoning of Large Language Models with Knowledge Graph Inspired Veracity Extrapolation
Jiashu He
,
Mingyu Derek Ma
,
Jinxuan Fan
,
Dan Roth
,
Wei Wang
,
Alejandro Ribeiro
AAAI
2025
Generalization of Graph Neural Networks Is Robust to Model Mismatch
Zhiyang Wang
,
Juan Cerviño
,
Alejandro Ribeiro
ICLR
2025
Learning Efficient Positional Encodings with Graph Neural Networks
Charilaos Kanatsoulis
,
Evelyn Choi
,
Stefanie Jegelka
,
Jure Leskovec
,
Alejandro Ribeiro
ICLR
2025
LoRanPAC: Low-Rank Random Features and Pre-Trained Models for Bridging Theory and Practice in Continual Learning
Liangzu Peng
,
Juan Elenter
,
Joshua Agterberg
,
Alejandro Ribeiro
,
Rene Vidal
LoG
2025
T-Gae: Transferable Graph Autoencoder for Network Alignment
Jiashu He
,
Charilaos Kanatsoulis
,
Alejandro Ribeiro
NeurIPS
2024
Constrained Diffusion Models via Dual Training
Shervin Khalafi
,
Dongsheng Ding
,
Alejandro Ribeiro
ICLR
2024
Counting Graph Substructures with Graph Neural Networks
Charilaos Kanatsoulis
,
Alejandro Ribeiro
ICML
2024
Loss Shaping Constraints for Long-Term Time Series Forecasting
Ignacio Hounie
,
Javier Porras-Valenzuela
,
Alejandro Ribeiro
ICLR
2024
Near-Optimal Solutions of Constrained Learning Problems
Juan Elenter
,
Luiz F. O. Chamon
,
Alejandro Ribeiro
ICML
2024
Neural Tangent Kernels Motivate Cross-Covariance Graphs in Neural Networks
Shervin Khalafi
,
Saurabh Sihag
,
Alejandro Ribeiro
AISTATS
2024
Resilient Constrained Reinforcement Learning
Dongsheng Ding
,
Zhengyan Huan
,
Alejandro Ribeiro
ICML
2023
Automatic Data Augmentation via Invariance-Constrained Learning
Ignacio Hounie
,
Luiz F. O. Chamon
,
Alejandro Ribeiro
NeurIPS
2023
Explainable Brain Age Prediction Using coVariance Neural Networks
Saurabh Sihag
,
Gonzalo Mateos
,
Corey McMillan
,
Alejandro Ribeiro
LoG
2023
Intrinsically Motivated Graph Exploration Using Network Theories of Human Curiosity
Shubhankar Prashant Patankar
,
Mathieu Ouellet
,
Juan Cervino
,
Alejandro Ribeiro
,
Kieran A. Murphy
,
Danielle Bassett
NeurIPS
2023
Last-Iterate Convergent Policy Gradient Primal-Dual Methods for Constrained MDPs
Dongsheng Ding
,
Chen-Yu Wei
,
Kaiqing Zhang
,
Alejandro Ribeiro
ICML
2023
Learning Globally Smooth Functions on Manifolds
Juan Cervino
,
Luiz F. O. Chamon
,
Benjamin David Haeffele
,
Rene Vidal
,
Alejandro Ribeiro
TMLR
2023
Learning Graph Structure from Convolutional Mixtures
Max Wasserman
,
Saurabh Sihag
,
Gonzalo Mateos
,
Alejandro Ribeiro
MLJ
2023
On the Sample Complexity of Actor-Critic Method for Reinforcement Learning with Function Approximation
Harshat Kumar
,
Alec Koppel
,
Alejandro Ribeiro
NeurIPS
2023
Resilient Constrained Learning
Ignacio Hounie
,
Alejandro Ribeiro
,
Luiz F. O. Chamon
LoG
2023
Transferable Hypergraph Neural Networks via Spectral Similarity
Mikhail Hayhoe
,
Hans Matthew Riess
,
Michael M. Zavlanos
,
Victor Preciado
,
Alejandro Ribeiro
NeurIPS
2022
A Lagrangian Duality Approach to Active Learning
Juan Elenter
,
Navid Naderializadeh
,
Alejandro Ribeiro
ICLR
2022
An Agnostic Approach to Federated Learning with Class Imbalance
Zebang Shen
,
Juan Cervino
,
Hamed Hassani
,
Alejandro Ribeiro
NeurIPSW
2022
Convolutional Neural Networks on Manifolds: From Graphs and Back
Zhiyang Wang
,
Luana Ruiz
,
Alejandro Ribeiro
COLT
2022
Self-Consistency of the Fokker Planck Equation
Zebang Shen
,
Zhenfu Wang
,
Satyen Kale
,
Alejandro Ribeiro
,
Amin Karbasi
,
Hamed Hassani
ICLR
2022
Space-Time Graph Neural Networks
Samar Hadou
,
Charilaos I Kanatsoulis
,
Alejandro Ribeiro
NeurIPS
2022
coVariance Neural Networks
Saurabh Sihag
,
Gonzalo Mateos
,
Corey McMillan
,
Alejandro Ribeiro
NeurIPS
2021
Adversarial Robustness with Semi-Infinite Constrained Learning
Alexander Robey
,
Luiz Chamon
,
George J. Pappas
,
Hamed Hassani
,
Alejandro Ribeiro
JMLR
2020
A Class of Parallel Doubly Stochastic Algorithms for Large-Scale Learning
Aryan Mokhtari
,
Alec Koppel
,
Martin Takac
,
Alejandro Ribeiro
ICLR
2020
A Stochastic Trust Region Method for Non-Convex Minimization
Zebang Shen
,
Pan Zhou
,
Cong Fang
,
Alejandro Ribeiro
L4DC
2020
Counterfactual Programming for Optimal Control
Luiz F. O. Chamon
,
Santiago Paternain
,
Alejandro Ribeiro
AISTATS
2020
Efficient Distributed Hessian Free Algorithm for Large-Scale Empirical Risk Minimization via Accumulating Sample Strategy
Majid Jahani
,
Xi He
,
Chenxin Ma
,
Aryan Mokhtari
,
Dheevatsa Mudigere
,
Alejandro Ribeiro
,
Martin Takac
NeurIPS
2020
Graphon Neural Networks and the Transferability of Graph Neural Networks
Luana Ruiz
,
Luiz Chamon
,
Alejandro Ribeiro
NeurIPS
2020
Probably Approximately Correct Constrained Learning
Luiz Chamon
,
Alejandro Ribeiro
NeurIPS
2020
Sinkhorn Barycenter via Functional Gradient Descent
Zebang Shen
,
Zhenfu Wang
,
Alejandro Ribeiro
,
Hamed Hassani
NeurIPS
2020
Sinkhorn Natural Gradient for Generative Models
Zebang Shen
,
Zhenfu Wang
,
Alejandro Ribeiro
,
Hamed Hassani
NeurIPS
2019
Constrained Reinforcement Learning Has Zero Duality Gap
Santiago Paternain
,
Luiz Chamon
,
Miguel Calvo-Fullana
,
Alejandro Ribeiro
ICLR
2019
Diffusion Scattering Transforms on Graphs
Fernando Gama
,
Alejandro Ribeiro
,
Joan Bruna
CoRL
2019
Graph Policy Gradients for Large Scale Robot Control
Arbaaz Khan
,
Ekaterina Tolstaya
,
Alejandro Ribeiro
,
Vijay Kumar
ICML
2019
Hessian Aided Policy Gradient
Zebang Shen
,
Alejandro Ribeiro
,
Hamed Hassani
,
Hui Qian
,
Chao Mi
CoRL
2019
Learning Decentralized Controllers for Robot Swarms with Graph Neural Networks
Ekaterina Tolstaya
,
Fernando Gama
,
James Paulos
,
George Pappas
,
Vijay Kumar
,
Alejandro Ribeiro
JMLR
2019
Parsimonious Online Learning with Kernels via Sparse Projections in Function Space
Alec Koppel
,
Garrett Warnell
,
Ethan Stump
,
Alejandro Ribeiro
NeurIPS
2019
Stability of Graph Scattering Transforms
Fernando Gama
,
Alejandro Ribeiro
,
Joan Bruna
AISTATS
2018
Large Scale Empirical Risk Minimization via Truncated Adaptive Newton Method
Mark Eisen
,
Aryan Mokhtari
,
Alejandro Ribeiro
NeurIPS
2017
Approximate Supermodularity Bounds for Experimental Design
Luiz Chamon
,
Alejandro Ribeiro
NeurIPS
2017
First-Order Adaptive Sample Size Methods to Reduce Complexity of Empirical Risk Minimization
Aryan Mokhtari
,
Alejandro Ribeiro
NeurIPS
2016
Adaptive Newton Method for Empirical Risk Minimization to Statistical Accuracy
Aryan Mokhtari
,
Hadi Daneshmand
,
Aurelien Lucchi
,
Thomas Hofmann
,
Alejandro Ribeiro
JMLR
2016
DSA: Decentralized Double Stochastic Averaging Gradient Algorithm
Aryan Mokhtari
,
Alejandro Ribeiro
JMLR
2015
Global Convergence of Online Limited Memory BFGS
Aryan Mokhtari
,
Alejandro Ribeiro
ICML
2014
Hierarchical Quasi-Clustering Methods for Asymmetric Networks
Gunnar Carlsson
,
Facundo Mémoli
,
Alejandro Ribeiro
,
Santiago Segarra