ML Anthology
Authors
Search
About
Richter, Lorenz
16 publications
TMLR
2026
From Discrete-Time Policies to Continuous-Time Diffusion Samplers: Asymptotic Equivalences and Faster Training
Julius Berner
,
Lorenz Richter
,
Marcin Sendera
,
Jarrid Rector-Brooks
,
Nikolay Malkin
ICML
2025
Reinforcement Learning with Random Time Horizons
Enric Ribera Borrell
,
Lorenz Richter
,
Christof Schuette
ICLR
2025
Sequential Controlled Langevin Diffusions
Junhua Chen
,
Lorenz Richter
,
Julius Berner
,
Denis Blessing
,
Gerhard Neumann
,
Anima Anandkumar
NeurIPS
2025
Trust Region Constrained Measure Transport in Path Space for Stochastic Optimal Control and Inference
Denis Blessing
,
Julius Berner
,
Lorenz Richter
,
Carles Domingo-Enrich
,
Yuanqi Du
,
Arash Vahdat
,
Gerhard Neumann
ICLR
2025
Underdamped Diffusion Bridges with Applications to Sampling
Denis Blessing
,
Julius Berner
,
Lorenz Richter
,
Gerhard Neumann
ICLRW
2025
Underdamped Diffusion Bridges with Applications to Sampling
Denis Blessing
,
Julius Berner
,
Lorenz Richter
,
Gerhard Neumann
TMLR
2024
An Optimal Control Perspective on Diffusion-Based Generative Modeling
Julius Berner
,
Lorenz Richter
,
Karen Ullrich
ICML
2024
Bridging Discrete and Continuous State Spaces: Exploring the Ehrenfest Process in Time-Continuous Diffusion Models
Ludwig Winkler
,
Lorenz Richter
,
Manfred Opper
ICLR
2024
Fast and Unified Path Gradient Estimators for Normalizing Flows
Lorenz Vaitl
,
Ludwig Winkler
,
Lorenz Richter
,
Pan Kessel
JMLR
2024
From Continuous-Time Formulations to Discretization Schemes: Tensor Trains and Robust Regression for BSDEs and Parabolic PDEs
Lorenz Richter
,
Leon Sallandt
,
Nikolas Nüsken
ICLR
2024
Improved Sampling via Learned Diffusions
Lorenz Richter
,
Julius Berner
ICMLW
2023
Improved Sampling via Learned Diffusions
Lorenz Richter
,
Julius Berner
,
Guan-Horng Liu
NeurIPSW
2022
An Optimal Control Perspective on Diffusion-Based Generative Modeling
Julius Berner
,
Lorenz Richter
,
Karen Ullrich
ICML
2022
Robust SDE-Based Variational Formulations for Solving Linear PDEs via Deep Learning
Lorenz Richter
,
Julius Berner
ICML
2021
Solving High-Dimensional Parabolic PDEs Using the Tensor Train Format
Lorenz Richter
,
Leon Sallandt
,
Nikolas Nüsken
NeurIPS
2020
VarGrad: A Low-Variance Gradient Estimator for Variational Inference
Lorenz Richter
,
Ayman Boustati
,
Nikolas Nüsken
,
Francisco Ruiz
,
Omer Deniz Akyildiz