Riedmiller, Martin

33 publications

ICLR 2025 Learning from Negative Feedback, or Positive Feedback or Both Abbas Abdolmaleki, Bilal Piot, Bobak Shahriari, Jost Tobias Springenberg, Tim Hertweck, Michael Bloesch, Rishabh Joshi, Thomas Lampe, Junhyuk Oh, Nicolas Heess, Jonas Buchli, Martin Riedmiller
NeurIPS 2024 Imitating Language via Scalable Inverse Reinforcement Learning Markus Wulfmeier, Michael Bloesch, Nino Vieillard, Arun Ahuja, Jörg Bornschein, Sandy Huang, Artem Sokolov, Matt Barnes, Guillaume Desjardins, Alex Bewley, Sarah Maria Elisabeth Bechtle, Jost Tobias Springenberg, Nikola Momchev, Olivier Bachem, Matthieu Geist, Martin Riedmiller
CoRL 2024 Learning Robot Soccer from Egocentric Vision with Deep Reinforcement Learning Dhruva Tirumala, Markus Wulfmeier, Ben Moran, Sandy Huang, Jan Humplik, Guy Lever, Tuomas Haarnoja, Leonard Hasenclever, Arunkumar Byravan, Nathan Batchelor, Neil Sreendra, Kushal Patel, Marlon Gwira, Francesco Nori, Martin Riedmiller, Nicolas Heess
ICML 2024 Offline Actor-Critic Reinforcement Learning Scales to Large Models Jost Tobias Springenberg, Abbas Abdolmaleki, Jingwei Zhang, Oliver Groth, Michael Bloesch, Thomas Lampe, Philemon Brakel, Sarah Maria Elisabeth Bechtle, Steven Kapturowski, Roland Hafner, Nicolas Heess, Martin Riedmiller
L4DC 2024 Real-World Fluid Directed Rigid Body Control via Deep Reinforcement Learning Mohak Bhardwaj, Thomas Lampe, Michael Neunert, Francesco Romano, Abbas Abdolmaleki, Arunkumar Byravan, Markus Wulfmeier, Martin Riedmiller, Jonas Buchli
ICLR 2024 Replay Across Experiments: A Natural Extension of Off-Policy RL Dhruva Tirumala, Thomas Lampe, Jose Enrique Chen, Tuomas Haarnoja, Sandy Huang, Guy Lever, Ben Moran, Tim Hertweck, Leonard Hasenclever, Martin Riedmiller, Nicolas Heess, Markus Wulfmeier
TMLR 2024 RoboCat: A Self-Improving Generalist Agent for Robotic Manipulation Konstantinos Bousmalis, Giulia Vezzani, Dushyant Rao, Coline Manon Devin, Alex X. Lee, Maria Bauza Villalonga, Todor Davchev, Yuxiang Zhou, Agrim Gupta, Akhil Raju, Antoine Laurens, Claudio Fantacci, Valentin Dalibard, Martina Zambelli, Murilo Fernandes Martins, Rugile Pevceviciute, Michiel Blokzijl, Misha Denil, Nathan Batchelor, Thomas Lampe, Emilio Parisotto, Konrad Zolna, Scott Reed, Sergio Gómez Colmenarejo, Jonathan Scholz, Abbas Abdolmaleki, Oliver Groth, Jean-Baptiste Regli, Oleg Sushkov, Thomas Rothörl, Jose Enrique Chen, Yusuf Aytar, David Barker, Joy Ortiz, Martin Riedmiller, Jost Tobias Springenberg, Raia Hadsell, Francesco Nori, Nicolas Heess
TMLR 2023 SkillS: Adaptive Skill Sequencing for Efficient Temporally-Extended Exploration Giulia Vezzani, Dhruva Tirumala, Markus Wulfmeier, Dushyant Rao, Abbas Abdolmaleki, Ben Moran, Tuomas Haarnoja, Jan Humplik, Roland Hafner, Michael Neunert, Claudio Fantacci, Tim Hertweck, Thomas Lampe, Fereshteh Sadeghi, Nicolas Heess, Martin Riedmiller
ICLR 2023 Solving Continuous Control via Q-Learning Tim Seyde, Peter Werner, Wilko Schwarting, Igor Gilitschenski, Martin Riedmiller, Daniela Rus, Markus Wulfmeier
ICLRW 2023 Towards a Unified Agent with Foundation Models Norman Di Palo, Arunkumar Byravan, Leonard Hasenclever, Markus Wulfmeier, Nicolas Heess, Martin Riedmiller
ICLR 2022 Evaluating Model-Based Planning and Planner Amortization for Continuous Control Arunkumar Byravan, Leonard Hasenclever, Piotr Trochim, Mehdi Mirza, Alessandro Davide Ialongo, Yuval Tassa, Jost Tobias Springenberg, Abbas Abdolmaleki, Nicolas Heess, Josh Merel, Martin Riedmiller
CoLLAs 2022 MO2: Model-Based Offline Options Sasha Salter, Markus Wulfmeier, Dhruva Tirumala, Nicolas Heess, Martin Riedmiller, Raia Hadsell, Dushyant Rao
CoRL 2021 A Constrained Multi-Objective Reinforcement Learning Framework Sandy Huang, Abbas Abdolmaleki, Giulia Vezzani, Philemon Brakel, Daniel J. Mankowitz, Michael Neunert, Steven Bohez, Yuval Tassa, Nicolas Heess, Martin Riedmiller, Raia Hadsell
CoRL 2021 Beyond Pick-and-Place: Tackling Robotic Stacking of Diverse Shapes Alex X. Lee, Coline Manon Devin, Yuxiang Zhou, Thomas Lampe, Konstantinos Bousmalis, Jost Tobias Springenberg, Arunkumar Byravan, Abbas Abdolmaleki, Nimrod Gileadi, David Khosid, Claudio Fantacci, Jose Enrique Chen, Akhil Raju, Rae Jeong, Michael Neunert, Antoine Laurens, Stefano Saliceti, Federico Casarini, Martin Riedmiller, Raia Hadsell, Francesco Nori
CoRL 2021 Collect & Infer - A Fresh Look at Data-Efficient Reinforcement Learning Martin Riedmiller, Jost Tobias Springenberg, Roland Hafner, Nicolas Heess
ICML 2021 Data-Efficient Hindsight Off-Policy Option Learning Markus Wulfmeier, Dushyant Rao, Roland Hafner, Thomas Lampe, Abbas Abdolmaleki, Tim Hertweck, Michael Neunert, Dhruva Tirumala, Noah Siegel, Nicolas Heess, Martin Riedmiller
NeurIPS 2021 Is Bang-Bang Control All You Need? Solving Continuous Control with Bernoulli Policies Tim Seyde, Igor Gilitschenski, Wilko Schwarting, Bartolomeo Stellato, Martin Riedmiller, Markus Wulfmeier, Daniela Rus
CoRL 2021 Towards Real Robot Learning in the Wild: A Case Study in Bipedal Locomotion Michael Bloesch, Jan Humplik, Viorica Patraucean, Roland Hafner, Tuomas Haarnoja, Arunkumar Byravan, Noah Yamamoto Siegel, Saran Tunyasuvunakool, Federico Casarini, Nathan Batchelor, Francesco Romano, Stefano Saliceti, Martin Riedmiller, S. M. Ali Eslami, Nicolas Heess
ICML 2020 A Distributional View on Multi-Objective Policy Optimization Abbas Abdolmaleki, Sandy Huang, Leonard Hasenclever, Michael Neunert, Francis Song, Martina Zambelli, Murilo Martins, Nicolas Heess, Raia Hadsell, Martin Riedmiller
ICLR 2020 Keep Doing What Worked: Behavior Modelling Priors for Offline Reinforcement Learning Noah Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael Neunert, Thomas Lampe, Roland Hafner, Nicolas Heess, Martin Riedmiller
ICLR 2020 Robust Reinforcement Learning for Continuous Control with Model Misspecification Daniel J. Mankowitz, Nir Levine, Rae Jeong, Yuanyuan Shi, Jackie Kay, Abbas Abdolmaleki, Jost Tobias Springenberg, Timothy Mann, Todd Hester, Martin Riedmiller
CoRL 2020 Towards General and Autonomous Learning of Core Skills: A Case Study in Locomotion Roland Hafner, Tim Hertweck, Philipp Kloeppner, Michael Bloesch, Michael Neunert, Markus Wulfmeier, Saran Tunyasuvunakool, Nicolas Heess, Martin Riedmiller
ICLR 2020 V-MPO: On-Policy Maximum a Posteriori Policy Optimization for Discrete and Continuous Control H. Francis Song, Abbas Abdolmaleki, Jost Tobias Springenberg, Aidan Clark, Hubert Soyer, Jack W. Rae, Seb Noury, Arun Ahuja, Siqi Liu, Dhruva Tirumala, Nicolas Heess, Dan Belov, Martin Riedmiller, Matthew M. Botvinick
CoRL 2019 Continuous-Discrete Reinforcement Learning for Hybrid Control in Robotics Michael Neunert, Abbas Abdolmaleki, Markus Wulfmeier, Thomas Lampe, Tobias Springenberg, Roland Hafner, Francesco Romano, Jonas Buchli, Nicolas Heess, Martin Riedmiller
CoRL 2019 Imagined Value Gradients: Model-Based Policy Optimization with Tranferable Latent Dynamics Models Arunkumar Byravan, Jost Tobias Springenberg, Abbas Abdolmaleki, Roland Hafner, Michael Neunert, Thomas Lampe, Noah Siegel, Nicolas Heess, Martin Riedmiller
ICML 2018 Graph Networks as Learnable Physics Engines for Inference and Control Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel, Martin Riedmiller, Raia Hadsell, Peter Battaglia
ICLR 2018 Learning an Embedding Space for Transferable Robot Skills Karol Hausman, Jost Tobias Springenberg, Ziyu Wang, Nicolas Heess, Martin Riedmiller
ICML 2018 Learning by Playing Solving Sparse Reward Tasks from Scratch Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas Degrave, Tom Wiele, Vlad Mnih, Nicolas Heess, Jost Tobias Springenberg
ICLR 2018 Maximum a Posteriori Policy Optimisation Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, Martin Riedmiller
NeurIPS 2015 Embed to Control: A Locally Linear Latent Dynamics Model for Control from Raw Images Manuel Watter, Jost Springenberg, Joschka Boedecker, Martin Riedmiller
ICML 2014 Deterministic Policy Gradient Algorithms David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, Martin Riedmiller
NeurIPS 2014 Discriminative Unsupervised Feature Learning with Convolutional Neural Networks Alexey Dosovitskiy, Jost Tobias Springenberg, Martin Riedmiller, Thomas Brox
NeurIPS 1996 Fast Network Pruning and Feature Extraction by Using the Unit-OBS Algorithm Achim Stahlberger, Martin Riedmiller