ML Anthology
Authors
Search
About
Rigollet, Philippe
35 publications
TMLR
2025
Gaussian Mixture Layers for Neural Networks
Sinho Chewi
,
Philippe Rigollet
,
Yuling Yan
NeurIPS
2025
Normalization in Attention Dynamics
Nikita Karagodin
,
Shu Ge
,
Yury Polyanskiy
,
Philippe Rigollet
NeurIPS
2024
Clustering in Causal Attention Masking
Nikita Karagodin
,
Yury Polyanskiy
,
Philippe Rigollet
AISTATS
2023
Bures-Wasserstein Barycenters and Low-Rank Matrix Recovery
Tyler Maunu
,
Thibaut Le Gouic
,
Philippe Rigollet
NeurIPS
2023
The Emergence of Clusters in Self-Attention Dynamics
Borjan Geshkovski
,
Cyril Letrouit
,
Yury Polyanskiy
,
Philippe Rigollet
AISTATS
2022
Rejection Sampling from Shape-Constrained Distributions in Sublinear Time
Sinho Chewi
,
Patrik R. Gerber
,
Chen Lu
,
Thibaut Le Gouic
,
Philippe Rigollet
NeurIPS
2022
GULP: A Prediction-Based Metric Between Representations
Enric Boix-Adsera
,
Hannah Lawrence
,
George Stepaniants
,
Philippe Rigollet
COLT
2022
The Query Complexity of Sampling from Strongly Log-Concave Distributions in One Dimension
Sinho Chewi
,
Patrik R Gerber
,
Chen Lu
,
Thibaut Le Gouic
,
Philippe Rigollet
NeurIPS
2022
Variational Inference via Wasserstein Gradient Flows
Marc Lambert
,
Sinho Chewi
,
Francis R. Bach
,
Silvère Bonnabel
,
Philippe Rigollet
AISTATS
2021
A Statistical Perspective on Coreset Density Estimation
Paxton Turner
,
Jingbo Liu
,
Philippe Rigollet
AISTATS
2021
Efficient Interpolation of Density Estimators
Paxton Turner
,
Jingbo Liu
,
Philippe Rigollet
AISTATS
2021
Fast and Smooth Interpolation on Wasserstein Space
Sinho Chewi
,
Julien Clancy
,
Thibaut Le Gouic
,
Philippe Rigollet
,
George Stepaniants
,
Austin Stromme
COLT
2021
Optimal Dimension Dependence of the Metropolis-Adjusted Langevin Algorithm
Sinho Chewi
,
Chen Lu
,
Kwangjun Ahn
,
Xiang Cheng
,
Thibaut Le Gouic
,
Philippe Rigollet
COLT
2020
Balancing Gaussian Vectors in High Dimension
Paxton Turner
,
Raghu Meka
,
Philippe Rigollet
UAI
2020
Estimation Rates for Sparse Linear Cyclic Causal Models
Jan-Christian Huetter
,
Philippe Rigollet
NeurIPS
2020
Exponential Ergodicity of Mirror-Langevin Diffusions
Sinho Chewi
,
Thibaut Le Gouic
,
Chen Lu
,
Tyler Maunu
,
Philippe Rigollet
,
Austin Stromme
COLT
2020
Gradient Descent Algorithms for Bures-Wasserstein Barycenters
Sinho Chewi
,
Tyler Maunu
,
Philippe Rigollet
,
Austin J. Stromme
NeurIPS
2020
SVGD as a Kernelized Wasserstein Gradient Flow of the Chi-Squared Divergence
Sinho Chewi
,
Thibaut Le Gouic
,
Chen Lu
,
Tyler Maunu
,
Philippe Rigollet
NeurIPS
2019
Power Analysis of Knockoff Filters for Correlated Designs
Jingbo Liu
,
Philippe Rigollet
AISTATS
2019
Statistical Optimal Transport via Factored Couplings
Aden Forrow
,
Jan-Christian Hütter
,
Mor Nitzan
,
Philippe Rigollet
,
Geoffrey Schiebinger
,
Jonathan Weed
COLT
2018
Conference on Learning Theory 2018: Preface
Sébastien Bubeck
,
Philippe Rigollet
COLT
2018
Conference on Learning Theory, COLT 2018, Stockholm, Sweden, 6-9 July 2018
Sébastien Bubeck
,
Vianney Perchet
,
Philippe Rigollet
ALT
2018
Minimax Rates and Efficient Algorithms for Noisy Sorting
Cheng Mao
,
Jonathan Weed
,
Philippe Rigollet
AISTATS
2018
Teacher Improves Learning by Selecting a Training Subset
Yuzhe Ma
,
Robert Nowak
,
Philippe Rigollet
,
Xuezhou Zhang
,
Xiaojin Zhu
ICML
2017
Learning Determinantal Point Processes with Moments and Cycles
John Urschel
,
Victor-Emmanuel Brunel
,
Ankur Moitra
,
Philippe Rigollet
NeurIPS
2017
Near-Linear Time Approximation Algorithms for Optimal Transport via Sinkhorn Iteration
Jason Altschuler
,
Jonathan Niles-Weed
,
Philippe Rigollet
COLT
2017
Rates of Estimation for Determinantal Point Processes
Victor-Emmanuel Brunel
,
Ankur Moitra
,
Philippe Rigollet
,
John Urschel
COLT
2016
Online Learning in Repeated Auctions
Jonathan Weed
,
Vianney Perchet
,
Philippe Rigollet
COLT
2015
Batched Bandit Problems
Vianney Perchet
,
Philippe Rigollet
,
Sylvain Chassang
,
Erik Snowberg
COLT
2013
Bounded Regret in Stochastic Multi-Armed Bandits
Sébastien Bubeck
,
Vianney Perchet
,
Philippe Rigollet
COLT
2013
Complexity Theoretic Lower Bounds for Sparse Principal Component Detection
Quentin Berthet
,
Philippe Rigollet
COLT
2011
Neyman-Pearson Classification Under a Strict Constraint
Philippe Rigollet
,
Xin Tong
JMLR
2011
Neyman-Pearson Classification, Convexity and Stochastic Constraints
Philippe Rigollet
,
Xin Tong
COLT
2010
Nonparametric Bandits with Covariates
Philippe Rigollet
,
Assaf Zeevi
JMLR
2007
Generalization Error Bounds in Semi-Supervised Classification Under the Cluster Assumption
Philippe Rigollet