Rohatgi, Dhruv

19 publications

COLT 2025 Computational-Statistical Tradeoffs at the Next-Token Prediction Barrier: Autoregressive and Imitation Learning Under Misspecification (extended Abstract) Dhruv Rohatgi, Adam Block, Audrey Huang, Akshay Krishnamurthy, Dylan J. Foster
COLT 2025 Is a Good Foundation Necessary for Efficient Reinforcement Learning? the Computational Role of the Base Model in Exploration Dylan J Foster, Zakaria Mhammedi, Dhruv Rohatgi
COLT 2025 Necessary and Sufficient Oracles: Toward a Computational Taxonomy for Reinforcement Learning Dhruv Rohatgi, Dylan J. Foster
ICLR 2025 Self-Improvement in Language Models: The Sharpening Mechanism Audrey Huang, Adam Block, Dylan J Foster, Dhruv Rohatgi, Cyril Zhang, Max Simchowitz, Jordan T. Ash, Akshay Krishnamurthy
NeurIPS 2025 To Distill or Decide? Understanding the Algorithmic Trade-Off in Partially Observable RL Yuda Song, Dhruv Rohatgi, Aarti Singh, Drew Bagnell
ICML 2025 Towards Characterizing the Value of Edge Embeddings in Graph Neural Networks Dhruv Rohatgi, Tanya Marwah, Zachary Chase Lipton, Jianfeng Lu, Ankur Moitra, Andrej Risteski
COLT 2024 Lasso with Latents: Efficient Estimation, Covariate Rescaling, and Computational-Statistical Gaps Jonathan Kelner, Frederic Koehler, Raghu Meka, Dhruv Rohatgi
NeurIPS 2024 Online Control in Population Dynamics Noah Golowich, Elad Hazan, Zhou Lu, Dhruv Rohatgi, Y. Jennifer Sun
NeurIPSW 2024 Self-Improvement in Language Models: The Sharpening Mechanism Audrey Huang, Adam Block, Dylan J Foster, Dhruv Rohatgi, Cyril Zhang, Max Simchowitz, Jordan T. Ash, Akshay Krishnamurthy
NeurIPSW 2024 Towards Characterizing the Value of Edge Embeddings in Graph Neural Networks Dhruv Rohatgi, Tanya Marwah, Zachary Chase Lipton, Jianfeng Lu, Ankur Moitra, Andrej Risteski
NeurIPS 2023 Feature Adaptation for Sparse Linear Regression Jonathan Kelner, Frederic Koehler, Raghu Meka, Dhruv Rohatgi
NeurIPS 2023 Provable Benefits of Score Matching Chirag Pabbaraju, Dhruv Rohatgi, Anish Prasad Sevekari, Holden Lee, Ankur Moitra, Andrej Risteski
ICMLW 2023 Provable Benefits of Score Matching Chirag Pabbaraju, Dhruv Rohatgi, Anish Sevekari, Holden Lee, Ankur Moitra, Andrej Risteski
ICLR 2023 Provably Auditing Ordinary Least Squares in Low Dimensions Ankur Moitra, Dhruv Rohatgi
NeurIPS 2022 Learning in Observable POMDPs, Without Computationally Intractable Oracles Noah Golowich, Ankur Moitra, Dhruv Rohatgi
NeurIPS 2022 Lower Bounds on Randomly Preconditioned Lasso via Robust Sparse Designs Jonathan Kelner, Frederic Koehler, Raghu Meka, Dhruv Rohatgi
NeurIPS 2022 Robust Generalized Method of Moments: A Finite Sample Viewpoint Dhruv Rohatgi, Vasilis Syrgkanis
NeurIPS 2020 Constant-Expansion Suffices for Compressed Sensing with Generative Priors Constantinos Daskalakis, Dhruv Rohatgi, Emmanouil Zampetakis
NeurIPS 2020 Truncated Linear Regression in High Dimensions Constantinos Daskalakis, Dhruv Rohatgi, Emmanouil Zampetakis