ML Anthology
Authors
Search
About
Roosta, Fred
24 publications
ICML
2025
Determinant Estimation Under Memory Constraints and Neural Scaling Laws
Siavash Ameli
,
Chris Van Der Heide
,
Liam Hodgkinson
,
Fred Roosta
,
Michael W. Mahoney
ICML
2025
Importance Sampling for Nonlinear Models
Prakash Palanivelu Rajmohan
,
Fred Roosta
NeurIPS
2025
Latent Refinement via Flow Matching for Training-Free Linear Inverse Problem Solving
Hossein Askari
,
Yadan Luo
,
Hongfu Sun
,
Fred Roosta
WACV
2025
Training-Free Medical Image Inverses via Bi-Level Guided Diffusion Models
Hossein Askari
,
Fred Roosta
,
Hongfu Sun
NeurIPS
2025
Uncertainty Quantification with the Empirical Neural Tangent Kernel
Joseph Wilson
,
Chris van der Heide
,
Liam Hodgkinson
,
Fred Roosta
ICML
2024
Inexact Newton-Type Methods for Optimisation with Nonnegativity Constraints
Oscar Smee
,
Fred Roosta
ICML
2024
Manifold Integrated Gradients: Riemannian Geometry for Feature Attribution
Eslam Zaher
,
Maciej Trzaskowski
,
Quan Nguyen
,
Fred Roosta
TMLR
2024
Non-Uniform Smoothness for Gradient Descent
Albert S. Berahas
,
Lindon Roberts
,
Fred Roosta
NeurIPSW
2023
A PAC-Bayesian Perspective on the Interpolating Information Criterion
Liam Hodgkinson
,
Chris van der Heide
,
Robert Salomone
,
Fred Roosta
,
Michael Mahoney
ICML
2023
Monotonicity and Double Descent in Uncertainty Estimation with Gaussian Processes
Liam Hodgkinson
,
Chris Van Der Heide
,
Fred Roosta
,
Michael W. Mahoney
JMLR
2022
LSAR: Efficient Leverage Score Sampling Algorithm for the Analysis of Big Time Series Data
Ali Eshragh
,
Fred Roosta
,
Asef Nazari
,
Michael W. Mahoney
AISTATS
2021
Shadow Manifold Hamiltonian Monte Carlo
Chris Heide
,
Fred Roosta
,
Liam Hodgkinson
,
Dirk Kroese
AAAI
2021
Avoiding Kernel Fixed Points: Computing with ELU and GELU Infinite Networks
Russell Tsuchida
,
Tim Pearce
,
Christopher van der Heide
,
Fred Roosta
,
Marcus Gallagher
JMLR
2021
Implicit Langevin Algorithms for Sampling from Log-Concave Densities
Liam Hodgkinson
,
Robert Salomone
,
Fred Roosta
JMLR
2021
Limit Theorems for Out-of-Sample Extensions of the Adjacency and Laplacian Spectral Embeddings
Keith D. Levin
,
Fred Roosta
,
Minh Tang
,
Michael W. Mahoney
,
Carey E. Priebe
UAI
2021
Non-PSD Matrix Sketching with Applications to Regression and Optimization
Zhili Feng
,
Fred Roosta
,
David P. Woodruff
UAI
2021
Stochastic Continuous Normalizing Flows: Training SDEs as ODEs
Liam Hodgkinson
,
Chris Heide
,
Fred Roosta
,
Michael W. Mahoney
ICML
2020
DINO: Distributed Newton-Type Optimization Method
Rixon Crane
,
Fred Roosta
NeurIPS
2019
DINGO: Distributed Newton-Type Method for Gradient-Norm Optimization
Rixon Crane
,
Fred Roosta
NeurIPS
2018
GIANT: Globally Improved Approximate Newton Method for Distributed Optimization
Shusen Wang
,
Fred Roosta
,
Peng Xu
,
Michael W. Mahoney
ICML
2018
Invariance of Weight Distributions in Rectified MLPs
Russell Tsuchida
,
Fred Roosta
,
Marcus Gallagher
ICML
2018
Out-of-Sample Extension of Graph Adjacency Spectral Embedding
Keith Levin
,
Fred Roosta
,
Michael Mahoney
,
Carey Priebe
NeurIPS
2017
Union of Intersections (UoI) for Interpretable Data Driven Discovery and Prediction
Kristofer Bouchard
,
Alejandro Bujan
,
Fred Roosta
,
Shashanka Ubaru
,
Mr. Prabhat
,
Antoine Snijders
,
Jian-Hua Mao
,
Edward Chang
,
Michael W. Mahoney
,
Sharmodeep Bhattacharya
NeurIPS
2016
Sub-Sampled Newton Methods with Non-Uniform Sampling
Peng Xu
,
Jiyan Yang
,
Fred Roosta
,
Christopher RĂ©
,
Michael W. Mahoney