Rosset, Saharon

22 publications

AISTATS 2025 Cross Validation for Correlated Data in Classification Models Oren Yuval, Saharon Rosset
AISTATS 2025 Flexible Copula-Based Mixed Models in Deep Learning: A Scalable Approach to Arbitrary Marginals Giora Simchoni, Saharon Rosset
ICML 2025 Improving Multi-Class Calibration Through Normalization-Aware Isotonic Techniques Alon Arad, Saharon Rosset
JMLR 2023 Integrating Random Effects in Deep Neural Networks Giora Simchoni, Saharon Rosset
JMLR 2022 Tree-Based Models for Correlated Data Assaf Rabinowicz, Saharon Rosset
NeurIPS 2021 Using Random Effects to Account for High-Cardinality Categorical Features and Repeated Measures in Deep Neural Networks Giora Simchoni, Saharon Rosset
JMLR 2019 Maximum Likelihood for Gaussian Process Classification and Generalized Linear Mixed Models Under Case-Control Sampling Omer Weissbrod, Shachar Kaufman, David Golan, Saharon Rosset
NeurIPS 2018 The Everlasting Database: Statistical Validity at a Fair Price Blake E Woodworth, Vitaly Feldman, Saharon Rosset, Nati Srebro
NeurIPS 2010 Decomposing Isotonic Regression for Efficiently Solving Large Problems Ronny Luss, Saharon Rosset, Moni Shahar
JMLR 2009 Bi-Level Path Following for Cross Validated Solution of Kernel Quantile Regression Saharon Rosset
ICML 2008 Bi-Level Path Following for Cross Validated Solution of Kernel Quantile Regression Saharon Rosset
COLT 2007 L1 Regularization in Infinite Dimensional Feature Spaces Saharon Rosset, Grzegorz Swirszcz, Nathan Srebro, Ji Zhu
ICML 2005 ROC Confidence Bands: An Empirical Evaluation Sofus A. Macskassy, Foster J. Provost, Saharon Rosset
NeurIPS 2004 A Method for Inferring Label Sampling Mechanisms in Semi-Supervised Learning Saharon Rosset, Ji Zhu, Hui Zou, Trevor J. Hastie
JMLR 2004 Boosting as a Regularized Path to a Maximum Margin Classifier Saharon Rosset, Ji Zhu, Trevor Hastie
NeurIPS 2004 Following Curved Regularized Optimization Solution Paths Saharon Rosset
ICML 2004 Model Selection via the AUC Saharon Rosset
JMLR 2004 The Entire Regularization Path for the Support Vector Machine Trevor Hastie, Saharon Rosset, Robert Tibshirani, Ji Zhu
NeurIPS 2004 The Entire Regularization Path for the Support Vector Machine Saharon Rosset, Robert Tibshirani, Ji Zhu, Trevor J. Hastie
NeurIPS 2003 1-Norm Support Vector Machines Ji Zhu, Saharon Rosset, Robert Tibshirani, Trevor J. Hastie
NeurIPS 2003 Margin Maximizing Loss Functions Saharon Rosset, Ji Zhu, Trevor J. Hastie
NeurIPS 2002 Boosting Density Estimation Saharon Rosset, Eran Segal