Rossi, Emanuele

14 publications

LoG 2025 UTG: Towards a Unified View of Snapshot and Event Based Models for Temporal Graphs Shenyang Huang, Farimah Poursafaei, Reihaneh Rabbany, Guillaume Rabusseau, Emanuele Rossi
ICMLW 2024 PLINDER: The Protein-Ligand Interactions Dataset and Evaluation Resource Janani Durairaj, Yusuf Adeshina, Zhonglin Cao, Xuejin Zhang, Vladas Oleinikovas, Thomas Duignan, Zachary McClure, Xavier Robin, Emanuele Rossi, Guoqing Zhou, Srimukh Prasad Veccham, Clemens Isert, Yuxing Peng, Prabindh Sundareson, Mehmet Akdel, Gabriele Corso, Hannes Stark, Zachary Wayne Carpenter, Michael M. Bronstein, Emine Kucukbenli, Torsten Schwede, Luca Naef
NeurIPS 2024 TGB 2.0: A Benchmark for Learning on Temporal Knowledge Graphs and Heterogeneous Graphs Julia Gastinger, Shenyang Huang, Mikhail Galkin, Erfan Loghmani, Ali Parviz, Farimah Poursafaei, Jacob Danovitch, Emanuele Rossi, Ioannis Koutis, Heiner Stuckenschmidt, Reihaneh Rabbany, Guillaume Rabusseau
LoG 2023 Edge Directionality Improves Learning on Heterophilic Graphs Emanuele Rossi, Bertrand Charpentier, Francesco Di Giovanni, Fabrizio Frasca, Stephan Günnemann, Michael M. Bronstein
ICLR 2023 Graph Neural Networks for Link Prediction with Subgraph Sketching Benjamin Paul Chamberlain, Sergey Shirobokov, Emanuele Rossi, Fabrizio Frasca, Thomas Markovich, Nils Yannick Hammerla, Michael M. Bronstein, Max Hansmire
AAAI 2023 Provably Efficient Causal Model-Based Reinforcement Learning for Systematic Generalization Mirco Mutti, Riccardo De Santi, Emanuele Rossi, Juan Felipe Calderón, Michael M. Bronstein, Marcello Restelli
NeurIPS 2023 Temporal Graph Benchmark for Machine Learning on Temporal Graphs Shenyang Huang, Farimah Poursafaei, Jacob Danovitch, Matthias Fey, Weihua Hu, Emanuele Rossi, Jure Leskovec, Michael Bronstein, Guillaume Rabusseau, Reihaneh Rabbany
ICMLW 2022 Invariance Discovery for Systematic Generalization in Reinforcement Learning Mirco Mutti, Riccardo De Santi, Emanuele Rossi, Juan Felipe Calderon, Michael M. Bronstein, Marcello Restelli
ICML 2022 Learning to Infer Structures of Network Games Emanuele Rossi, Federico Monti, Yan Leng, Michael Bronstein, Xiaowen Dong
LoG 2022 On the Unreasonable Effectiveness of Feature Propagation in Learning on Graphs with Missing Node Features Emanuele Rossi, Henry Kenlay, Maria I. Gorinova, Benjamin Paul Chamberlain, Xiaowen Dong, Michael M. Bronstein
NeurIPSW 2022 On the Unreasonable Effectiveness of Feature Propagation in Learning on Graphs with Missing Node Features Emanuele Rossi, Henry Kenlay, Maria I. Gorinova, Benjamin Paul Chamberlain, Xiaowen Dong, Michael M. Bronstein
NeurIPSW 2022 Provably Efficient Causal Model-Based Reinforcement Learning for Environment-Agnostic Generalization Mirco Mutti, Riccardo De Santi, Emanuele Rossi, Juan Felipe Calderon, Michael M. Bronstein, Marcello Restelli
ICML 2021 GRAND: Graph Neural Diffusion Ben Chamberlain, James Rowbottom, Maria I Gorinova, Michael Bronstein, Stefan Webb, Emanuele Rossi
NeurIPSW 2021 GRAND: Graph Neural Diffusion Benjamin Paul Chamberlain, James Rowbottom, Maria I. Gorinova, Stefan D Webb, Emanuele Rossi, Michael M. Bronstein