ML Anthology
Authors
Search
About
Roth, Aaron
56 publications
ICLR
2025
Auto-GDA: Automatic Domain Adaptation for Efficient Grounding Verification in Retrieval-Augmented Generation
Tobias Leemann
,
Periklis Petridis
,
Giuseppe Vietri
,
Dionysis Manousakas
,
Aaron Roth
,
Sergul Aydore
ICLR
2025
Conformal Language Model Reasoning with Coherent Factuality
Maxon Rubin-Toles
,
Maya Gambhir
,
Keshav Ramji
,
Aaron Roth
,
Surbhi Goel
ICML
2025
Decision Theoretic Foundations for Conformal Prediction: Optimal Uncertainty Quantification for Risk-Averse Agents
Shayan Kiyani
,
George J. Pappas
,
Aaron Roth
,
Hamed Hassani
ICML
2025
High-Dimensional Prediction for Sequential Decision Making
Georgy Noarov
,
Ramya Ramalingam
,
Aaron Roth
,
Stephan Xie
ICML
2025
Intersectional Fairness in Reinforcement Learning with Large State and Constraint Spaces
Eric Eaton
,
Marcel Hussing
,
Michael Kearns
,
Aaron Roth
,
Sikata Bela Sengupta
,
Jessica Sorrell
COLT
2025
Sample Efficient Omniprediction and Downstream Swap Regret for Non-Linear Losses
Jiuyao Lu
,
Aaron Roth
,
Mirah Shi
ICML
2025
Stronger Neyman Regret Guarantees for Adaptive Experimental Design
Georgy Noarov
,
Riccardo Fogliato
,
Martin Andres Bertran
,
Aaron Roth
ICML
2025
The Relationship Between No-Regret Learning and Online Conformal Prediction
Ramya Ramalingam
,
Shayan Kiyani
,
Aaron Roth
NeurIPSW
2024
An Elementary Predictor Obtaining 2\sqrt{T} Distance to Calibration
Eshwar Ram Arunachaleswaran
,
Natalie Collina
,
Aaron Roth
,
Mirah Shi
COLT
2024
Conference on Learning Theory 2024: Preface
Shipra Agrawal
,
Aaron Roth
ICML
2024
Fair Risk Control: A Generalized Framework for Calibrating Multi-Group Fairness Risks
Lujing Zhang
,
Aaron Roth
,
Linjun Zhang
ICML
2024
Membership Inference Attacks on Diffusion Models via Quantile Regression
Shuai Tang
,
Steven Wu
,
Sergul Aydore
,
Michael Kearns
,
Aaron Roth
ICML
2024
Multicalibration for Confidence Scoring in LLMs
Gianluca Detommaso
,
Martin Andres Bertran
,
Riccardo Fogliato
,
Aaron Roth
ICLR
2024
Oracle Efficient Algorithms for Groupwise Regret
Krishna Acharya
,
Eshwar Ram Arunachaleswaran
,
Sampath Kannan
,
Aaron Roth
,
Juba Ziani
NeurIPS
2024
Oracle-Efficient Reinforcement Learning for Max Value Ensembles
Marcel Hussing
,
Michael Kearns
,
Aaron Roth
,
Sikata Bela Sengupta
,
Jessica Sorrell
ICMLW
2024
Oracle-Efficient Reinforcement Learning for Max Value Ensembles
Marcel Hussing
,
Michael Kearns
,
Aaron Roth
,
Sikata Bela Sengupta
,
Jessica Sorrell
NeurIPS
2024
Reconstruction Attacks on Machine Unlearning: Simple Models Are Vulnerable
Martin Bertran
,
Shuai Tang
,
Michael Kearns
,
Jamie Morgenstern
,
Aaron Roth
,
Zhiwei Steven Wu
NeurIPSW
2024
Tractable Agreement Protocols
Natalie Collina
,
Surbhi Goel
,
Varun Gupta
,
Aaron Roth
ICLR
2023
Batch Multivalid Conformal Prediction
Christopher Jung
,
Georgy Noarov
,
Ramya Ramalingam
,
Aaron Roth
NeurIPSW
2023
High-Dimensional Unbiased Prediction for Sequential Decision Making
Georgy Noarov
,
Ramya Ramalingam
,
Aaron Roth
,
Stephan Xie
ICML
2023
Individually Fair Learning with One-Sided Feedback
Yahav Bechavod
,
Aaron Roth
NeurIPSW
2023
Membership Inference Attack on Diffusion Models via Quantile Regression
Steven Wu
,
Shuai Tang
,
Sergul Aydore
,
Michael Kearns
,
Aaron Roth
ICML
2023
Multicalibration as Boosting for Regression
Ira Globus-Harris
,
Declan Harrison
,
Michael Kearns
,
Aaron Roth
,
Jessica Sorrell
NeurIPSW
2023
Oracle Efficient Algorithms for Groupwise Regret
Krishna Acharya
,
Eshwar Ram Arunachaleswaran
,
Juba Ziani
,
Aaron Roth
,
Sampath Kannan
NeurIPS
2023
Scalable Membership Inference Attacks via Quantile Regression
Martin Bertran
,
Shuai Tang
,
Aaron Roth
,
Michael J. Kearns
,
Jamie H Morgenstern
,
Steven Z. Wu
ICML
2023
The Statistical Scope of Multicalibration
Georgy Noarov
,
Aaron Roth
NeurIPSW
2022
Differentially Private Gradient Boosting on Linear Learners for Tabular Data
Saeyoung Rho
,
Cedric Archambeau
,
Sergul Aydore
,
Beyza Ermis
,
Michael Kearns
,
Aaron Roth
,
Shuai Tang
,
Yu-Xiang Wang
,
Steven Wu
CVPR
2022
Mixed Differential Privacy in Computer Vision
Aditya Golatkar
,
Alessandro Achille
,
Yu-Xiang Wang
,
Aaron Roth
,
Michael Kearns
,
Stefano Soatto
NeurIPS
2022
Online Minimax Multiobjective Optimization: Multicalibeating and Other Applications
Daniel D. Lee
,
Georgy Noarov
,
Mallesh Pai
,
Aaron Roth
NeurIPS
2022
Practical Adversarial Multivalid Conformal Prediction
Osbert Bastani
,
Varun Gupta
,
Christopher Jung
,
Georgy Noarov
,
Ramya Ramalingam
,
Aaron Roth
NeurIPS
2022
Private Synthetic Data for Multitask Learning and Marginal Queries
Giuseppe Vietri
,
Cedric Archambeau
,
Sergul Aydore
,
William Brown
,
Michael J. Kearns
,
Aaron Roth
,
Ankit Siva
,
Shuai Tang
,
Steven Z. Wu
NeurIPS
2021
Adaptive Machine Unlearning
Varun Gupta
,
Christopher Jung
,
Seth Neel
,
Aaron Roth
,
Saeed Sharifi-Malvajerdi
,
Chris Waites
ALT
2021
Descent-to-Delete: Gradient-Based Methods for Machine Unlearning
Seth Neel
,
Aaron Roth
,
Saeed Sharifi-Malvajerdi
ICML
2021
Differentially Private Query Release Through Adaptive Projection
Sergul Aydore
,
William Brown
,
Michael Kearns
,
Krishnaram Kenthapadi
,
Luca Melis
,
Aaron Roth
,
Ankit A. Siva
COLT
2021
Moment Multicalibration for Uncertainty Estimation
Christopher Jung
,
Changhwa Lee
,
Mallesh Pai
,
Aaron Roth
,
Rakesh Vohra
AISTATS
2020
Guaranteed Validity for Empirical Approaches to Adaptive Data Analysis
Ryan Rogers
,
Aaron Roth
,
Adam Smith
,
Nathan Srebro
,
Om Thakkar
,
Blake Woodworth
ICML
2020
Oracle Efficient Private Non-Convex Optimization
Seth Neel
,
Aaron Roth
,
Giuseppe Vietri
,
Steven Wu
NeurIPS
2019
Average Individual Fairness: Algorithms, Generalization and Experiments
Saeed Sharifi-Malvajerdi
,
Michael Kearns
,
Aaron Roth
ICML
2019
Differentially Private Fair Learning
Matthew Jagielski
,
Michael Kearns
,
Jieming Mao
,
Alina Oprea
,
Aaron Roth
,
Saeed Sharifi-Malvajerdi
,
Jonathan Ullman
NeurIPS
2019
Equal Opportunity in Online Classification with Partial Feedback
Yahav Bechavod
,
Katrina Ligett
,
Aaron Roth
,
Bo Waggoner
,
Steven Z. Wu
NeurIPS
2018
A Smoothed Analysis of the Greedy Algorithm for the Linear Contextual Bandit Problem
Sampath Kannan
,
Jamie H Morgenstern
,
Aaron Roth
,
Bo Waggoner
,
Zhiwei Steven Wu
NeurIPS
2018
Local Differential Privacy for Evolving Data
Matthew Joseph
,
Aaron Roth
,
Jonathan Ullman
,
Bo Waggoner
ICML
2018
Mitigating Bias in Adaptive Data Gathering via Differential Privacy
Seth Neel
,
Aaron Roth
NeurIPS
2018
Online Learning with an Unknown Fairness Metric
Stephen Gillen
,
Christopher Jung
,
Michael Kearns
,
Aaron Roth
ICML
2018
Preventing Fairness Gerrymandering: Auditing and Learning for Subgroup Fairness
Michael Kearns
,
Seth Neel
,
Aaron Roth
,
Zhiwei Steven Wu
NeurIPS
2017
Accuracy First: Selecting a Differential Privacy Level for Accuracy Constrained ERM
Katrina Ligett
,
Seth Neel
,
Aaron Roth
,
Bo Waggoner
,
Steven Z. Wu
ICML
2017
Fairness in Reinforcement Learning
Shahin Jabbari
,
Matthew Joseph
,
Michael Kearns
,
Jamie Morgenstern
,
Aaron Roth
ICML
2017
Meritocratic Fairness for Cross-Population Selection
Michael Kearns
,
Aaron Roth
,
Zhiwei Steven Wu
COLT
2016
Adaptive Learning with Robust Generalization Guarantees
Rachel Cummings
,
Katrina Ligett
,
Kobbi Nissim
,
Aaron Roth
,
Zhiwei Steven Wu
NeurIPS
2016
Fairness in Learning: Classic and Contextual Bandits
Matthew Joseph
,
Michael Kearns
,
Jamie H Morgenstern
,
Aaron Roth
NeurIPS
2016
Learning from Rational Behavior: Predicting Solutions to Unknown Linear Programs
Shahin Jabbari
,
Ryan M Rogers
,
Aaron Roth
,
Steven Z. Wu
NeurIPS
2016
Privacy Odometers and Filters: Pay-as-You-Go Composition
Ryan M Rogers
,
Aaron Roth
,
Jonathan Ullman
,
Salil Vadhan
IJCAI
2016
Tight Policy Regret Bounds for Improving and Decaying Bandits
Hoda Heidari
,
Michael J. Kearns
,
Aaron Roth
NeurIPS
2015
Generalization in Adaptive Data Analysis and Holdout Reuse
Cynthia Dwork
,
Vitaly Feldman
,
Moritz Hardt
,
Toni Pitassi
,
Omer Reingold
,
Aaron Roth
AAAI
2015
Online Learning and Profit Maximization from Revealed Preferences
Kareem Amin
,
Rachel Cummings
,
Lili Dworkin
,
Michael J. Kearns
,
Aaron Roth
ICML
2014
Dual Query: Practical Private Query Release for High Dimensional Data
Marco Gaboardi
,
Emilio Jesus Gallego Arias
,
Justin Hsu
,
Aaron Roth
,
Zhiwei Steven Wu