ML Anthology
Authors
Search
About
Runge, Jakob
23 publications
CLeaR
2025
Non-Parametric Conditional Independence Testing for Mixed Continuous-Categorical Variables: A Novel Method and Numerical Evaluation
Oana-Iuliana Popescu
,
Andreas Gerhardus
,
Martin Rabel
,
Jakob Runge
ICML
2025
Sanity Checking Causal Representation Learning on a Simple Real-World System
Juan L. Gamella
,
Simon Bing
,
Jakob Runge
AISTATS
2025
Separation-Based Distance Measures for Causal Graphs
Jonas Wahl
,
Jakob Runge
CLeaR
2025
Unitless Unrestricted Markov-Consistent SCM Generation: Better Benchmark Datasets for Causal Discovery
Rebecca J. Herman
,
Jonas Wahl
,
Urmi Ninad
,
Jakob Runge
UAI
2024
A Global Markov Property for Solutions of Stochastic Difference Equations and the Corresponding Full Time Graphs
Tom Hochsprung
,
Jakob Runge
,
Andreas Gerhardus
CLeaR
2024
Bootstrap Aggregation and Confidence Measures to Improve Time Series Causal Discovery
Kevin Debeire
,
Andreas Gerhardus
,
Jakob Runge
,
Veronika Eyring
NeurIPS
2024
Causal Discovery with Endogenous Context Variables
Wiebke Günther
,
Oana-Iuliana Popescu
,
Martin Rabel
,
Urmi Ninad
,
Andreas Gerhardus
,
Jakob Runge
CLeaR
2024
Identifying Linearly-Mixed Causal Representations from Multi-Node Interventions
Simon Bing
,
Urmi Ninad
,
Jonas Wahl
,
Jakob Runge
TMLR
2024
Invariance & Causal Representation Learning: Prospects and Limitations
Simon Bing
,
Tom Hochsprung
,
Jonas Wahl
,
Urmi Ninad
,
Jakob Runge
UAI
2023
Causal Discovery for Time Series from Multiple Datasets with Latent Contexts
Wiebke Günther
,
Urmi Ninad
,
Jakob Runge
NeurIPS
2023
ClimateSet: A Large-Scale Climate Model Dataset for Machine Learning
Julia Kaltenborn
,
Charlotte Lange
,
Venkatesh Ramesh
,
Philippe Brouillard
,
Yaniv Gurwicz
,
Chandni Nagda
,
Jakob Runge
,
Peer Nowack
,
David Rolnick
JMLR
2023
Distinguishing Cause and Effect in Bivariate Structural Causal Models: A Systematic Investigation
Christoph Käding
,
Jakob Runge
UAI
2023
Increasing Effect Sizes of Pairwise Conditional Independence Tests Between Random Vectors
Tom Hochsprung
,
Jonas Wahl
,
Andreas Gerhardus
,
Urmi Ninad
,
Jakob Runge
NeurIPSW
2023
Invariance & Causal Representation Learning: Prospects and Limitations
Simon Bing
,
Jonas Wahl
,
Urmi Ninad
,
Jakob Runge
AAAI
2023
Vector Causal Inference Between Two Groups of Variables
Jonas Wahl
,
Urmi Ninad
,
Jakob Runge
NeurIPS
2022
Conditional Independence Testing with Heteroskedastic Data and Applications to Causal Discovery
Wiebke Günther
,
Urmi Ninad
,
Jonas Wahl
,
Jakob Runge
CVPRW
2021
Conditional Dependence Tests Reveal the Usage of ABCD Rule Features and Bias Variables in Automatic Skin Lesion Classification
Christian Reimers
,
Niklas Penzel
,
Paul Bodesheim
,
Jakob Runge
,
Joachim Denzler
CVPRW
2021
EarthNet2021: A Large-Scale Dataset and Challenge for Earth Surface Forecasting as a Guided Video Prediction Task
Christian Requena-Mesa
,
Vitus Benson
,
Markus Reichstein
,
Jakob Runge
,
Joachim Denzler
NeurIPS
2021
Necessary and Sufficient Graphical Conditions for Optimal Adjustment Sets in Causal Graphical Models with Hidden Variables
Jakob Runge
ECCV
2020
Determining the Relevance of Features for Deep Neural Networks
Christian Reimers
,
Jakob Runge
,
Joachim Denzler
UAI
2020
Discovering Contemporaneous and Lagged Causal Relations in Autocorrelated Nonlinear Time Series Datasets
Jakob Runge
NeurIPS
2020
High-Recall Causal Discovery for Autocorrelated Time Series with Latent Confounders
Andreas Gerhardus
,
Jakob Runge
AISTATS
2018
Conditional Independence Testing Based on a Nearest-Neighbor Estimator of Conditional Mutual Information
Jakob Runge