ML Anthology
Authors
Search
About
Rusch, T. Konstantin
15 publications
CoRL
2025
Improving Efficiency of Sampling-Based Motion Planning via Message-Passing Monte Carlo
Makram Chahine
,
T. Konstantin Rusch
,
Zach J Patterson
,
Daniela Rus
ICLRW
2025
Improving Efficiency of Sampling-Based Motion Planning via Message-Passing Monte Carlo
Makram Chahine
,
T. Konstantin Rusch
,
Zach J Patterson
,
Daniela Rus
ICLRW
2025
Low Stein Discrepancy via Message-Passing Monte Carlo
Nathan Kirk
,
T. Konstantin Rusch
,
Jakob Zech
,
Daniela Rus
ICLR
2025
Oscillatory State-Space Models
T. Konstantin Rusch
,
Daniela Rus
ICLRW
2025
Relaxed Equivariance via Multitask Learning
Ahmed A. A. Elhag
,
T. Konstantin Rusch
,
Francesco Di Giovanni
,
Michael M. Bronstein
TMLR
2024
How Does Over-Squashing Affect the Power of GNNs?
Francesco Di Giovanni
,
T. Konstantin Rusch
,
Michael Bronstein
,
Andreea Deac
,
Marc Lackenby
,
Siddhartha Mishra
,
Petar Veličković
ICMLW
2024
Message-Passing Monte Carlo: Generating Low-Discrepancy Point Sets via Graph Neural Networks
T. Konstantin Rusch
,
Nathan Kirk
,
Michael M. Bronstein
,
Christiane Lemieux
,
Daniela Rus
ICLR
2023
Gradient Gating for Deep Multi-Rate Learning on Graphs
T. Konstantin Rusch
,
Benjamin Paul Chamberlain
,
Michael W. Mahoney
,
Michael M. Bronstein
,
Siddhartha Mishra
NeurIPSW
2023
How Does Over-Squashing Affect the Power of GNNs?
Francesco Di Giovanni
,
T. Konstantin Rusch
,
Michael Bronstein
,
Andreea Deac
,
Marc Lackenby
,
Siddhartha Mishra
,
Petar Veličković
ICLRW
2023
Multi-Scale Message Passing Neural PDE Solvers
Léonard Equer
,
T. Konstantin Rusch
,
Siddhartha Mishra
NeurIPS
2023
Neural Oscillators Are Universal
Samuel Lanthaler
,
T. Konstantin Rusch
,
Siddhartha Mishra
ICML
2022
Graph-Coupled Oscillator Networks
T. Konstantin Rusch
,
Ben Chamberlain
,
James Rowbottom
,
Siddhartha Mishra
,
Michael Bronstein
ICLR
2022
Long Expressive Memory for Sequence Modeling
T. Konstantin Rusch
,
Siddhartha Mishra
,
N. Benjamin Erichson
,
Michael W. Mahoney
ICLR
2021
Coupled Oscillatory Recurrent Neural Network (coRNN): An Accurate and (gradient) Stable Architecture for Learning Long Time Dependencies
T. Konstantin Rusch
,
Siddhartha Mishra
ICML
2021
UnICORNN: A Recurrent Model for Learning Very Long Time Dependencies
T. Konstantin Rusch
,
Siddhartha Mishra