ML Anthology
Authors
Search
About
Rybkin, Oleh
24 publications
NeurIPS
2025
Compute-Optimal Scaling for Value-Based Deep RL
Preston Fu
,
Oleh Rybkin
,
Zhiyuan Zhou
,
Michal Nauman
,
Pieter Abbeel
,
Sergey Levine
,
Aviral Kumar
ICML
2025
Latent Diffusion Planning for Imitation Learning
Amber Xie
,
Oleh Rybkin
,
Dorsa Sadigh
,
Chelsea Finn
NeurIPS
2025
Real-World Reinforcement Learning of Active Perception Behaviors
Edward S. Hu
,
Jie Wang
,
Xingfang Yuan
,
Fiona Luo
,
Muyao Li
,
Gaspard Lambrechts
,
Oleh Rybkin
,
Dinesh Jayaraman
ICML
2025
Value-Based Deep RL Scales Predictably
Oleh Rybkin
,
Michal Nauman
,
Preston Fu
,
Charlie Victor Snell
,
Pieter Abbeel
,
Sergey Levine
,
Aviral Kumar
ICLRW
2025
Value-Based Deep RL Scales Predictably
Oleh Rybkin
,
Michal Nauman
,
Preston Fu
,
Charlie Victor Snell
,
Pieter Abbeel
,
Sergey Levine
,
Aviral Kumar
ICLR
2024
METRA: Scalable Unsupervised RL with Metric-Aware Abstraction
Seohong Park
,
Oleh Rybkin
,
Sergey Levine
ICLR
2024
Privileged Sensing Scaffolds Reinforcement Learning
Edward S. Hu
,
James Springer
,
Oleh Rybkin
,
Dinesh Jayaraman
NeurIPSW
2023
METRA: Scalable Unsupervised RL with Metric-Aware Abstraction
Seohong Park
,
Oleh Rybkin
,
Sergey Levine
NeurIPSW
2023
METRA: Scalable Unsupervised RL with Metric-Aware Abstraction
Seohong Park
,
Oleh Rybkin
,
Sergey Levine
ICLR
2023
Planning Goals for Exploration
Edward S. Hu
,
Richard Chang
,
Oleh Rybkin
,
Dinesh Jayaraman
ICLR
2022
Know Thyself: Transferable Visual Control Policies Through Robot-Awareness
Edward S. Hu
,
Kun Huang
,
Oleh Rybkin
,
Dinesh Jayaraman
ICLRW
2022
Know Thyself: Transferable Visual Control Policies Through Robot-Awareness
Edward S. Hu
,
Kun Huang
,
Oleh Rybkin
,
Dinesh Jayaraman
NeurIPS
2022
Learning General World Models in a Handful of Reward-Free Deployments
Yingchen Xu
,
Jack Parker-Holder
,
Aldo Pacchiano
,
Philip Ball
,
Oleh Rybkin
,
S Roberts
,
Tim Rocktäschel
,
Edward Grefenstette
NeurIPS
2021
Discovering and Achieving Goals via World Models
Russell Mendonca
,
Oleh Rybkin
,
Kostas Daniilidis
,
Danijar Hafner
,
Deepak Pathak
ICMLW
2021
Discovering and Achieving Goals with World Models
Russell Mendonca
,
Oleh Rybkin
,
Kostas Daniilidis
,
Danijar Hafner
,
Deepak Pathak
ICML
2021
Model-Based Reinforcement Learning via Latent-Space Collocation
Oleh Rybkin
,
Chuning Zhu
,
Anusha Nagabandi
,
Kostas Daniilidis
,
Igor Mordatch
,
Sergey Levine
ICML
2021
Simple and Effective VAE Training with Calibrated Decoders
Oleh Rybkin
,
Kostas Daniilidis
,
Sergey Levine
L4DC
2020
Keyframing the Future: Keyframe Discovery for Visual Prediction and Planning
Karl Pertsch
,
Oleh Rybkin
,
Jingyun Yang
,
Shenghao Zhou
,
Konstantinos Derpanis
,
Kostas Daniilidis
,
Joseph Lim
,
Andrew Jaegle
ECCV
2020
Learning Predictive Models from Observation and Interaction
Karl Schmeckpeper
,
Annie Xie
,
Oleh Rybkin
,
Stephen Tian
,
Kostas Daniilidis
,
Sergey Levine
,
Chelsea Finn
NeurIPS
2020
Long-Horizon Visual Planning with Goal-Conditioned Hierarchical Predictors
Karl Pertsch
,
Oleh Rybkin
,
Frederik Ebert
,
Shenghao Zhou
,
Dinesh Jayaraman
,
Chelsea Finn
,
Sergey Levine
ICML
2020
Planning to Explore via Self-Supervised World Models
Ramanan Sekar
,
Oleh Rybkin
,
Kostas Daniilidis
,
Pieter Abbeel
,
Danijar Hafner
,
Deepak Pathak
CoRL
2020
Reinforcement Learning with Videos: Combining Offline Observations with Interaction
Karl Schmeckpeper
,
Oleh Rybkin
,
Kostas Daniilidis
,
Sergey Levine
,
Chelsea Finn
ECCVW
2020
Toward Continuous-Time Representations of Human Motion
Weiyu Du
,
Oleh Rybkin
,
Lingzhi Zhang
,
Jianbo Shi
ICLR
2019
Learning What You Can Do Before Doing Anything
Oleh Rybkin
,
Karl Pertsch
,
Konstantinos G. Derpanis
,
Kostas Daniilidis
,
Andrew Jaegle