ML Anthology
Authors
Search
About
Saito, Yuta
15 publications
ICLR
2025
A General Framework for Off-Policy Learning with Partially-Observed Reward
Rikiya Takehi
,
Masahiro Asami
,
Kosuke Kawakami
,
Yuta Saito
ICLR
2025
Cross-Domain Off-Policy Evaluation and Learning for Contextual Bandits
Yuta Natsubori
,
Masataka Ushiku
,
Yuta Saito
NeurIPS
2025
MultiScale Contextual Bandits for Long Term Objectives
Richa Rastogi
,
Yuta Saito
,
Thorsten Joachims
ICLR
2025
POTEC: Off-Policy Contextual Bandits for Large Action Spaces via Policy Decomposition
Yuta Saito
,
Jihan Yao
,
Thorsten Joachims
ICMLW
2024
Efficient Offline Learning of Ranking Policies via Top-$k$ Policy Decomposition
Ren Kishimoto
,
Koichi Tanaka
,
Haruka Kiyohara
,
Yusuke Narita
,
Nobuyuki Shimizu
,
Yasuo Yamamoto
,
Yuta Saito
IJCAI
2024
Hyperparameter Optimization Can Even Be Harmful in Off-Policy Learning and How to Deal with It
Yuta Saito
,
Masahiro Nomura
ICMLW
2024
MultiScale Policy Learning for Alignment with Long Term Objectives
Richa Rastogi
,
Yuta Saito
,
Thorsten Joachims
ICLRW
2024
Prompt Optimization with Logged Bandit Data
Haruka Kiyohara
,
Yuta Saito
,
Daniel Yiming Cao
,
Thorsten Joachims
ICLR
2024
Towards Assessing and Benchmarking Risk-Return Tradeoff of Off-Policy Evaluation
Haruka Kiyohara
,
Ren Kishimoto
,
Kosuke Kawakami
,
Ken Kobayashi
,
Kazuhide Nakata
,
Yuta Saito
ICML
2023
Off-Policy Evaluation for Large Action Spaces via Conjunct Effect Modeling
Yuta Saito
,
Qingyang Ren
,
Thorsten Joachims
AAAI
2023
Policy-Adaptive Estimator Selection for Off-Policy Evaluation
Takuma Udagawa
,
Haruka Kiyohara
,
Yusuke Narita
,
Yuta Saito
,
Kei Tateno
ICML
2022
Off-Policy Evaluation for Large Action Spaces via Embeddings
Yuta Saito
,
Thorsten Joachims
IJCAI
2022
Towards Resolving Propensity Contradiction in Offline Recommender Learning
Yuta Saito
,
Masahiro Nomura
ICML
2021
Optimal Off-Policy Evaluation from Multiple Logging Policies
Nathan Kallus
,
Yuta Saito
,
Masatoshi Uehara
ICML
2020
Counterfactual Cross-Validation: Stable Model Selection Procedure for Causal Inference Models
Yuta Saito
,
Shota Yasui