ML Anthology
Authors
Search
About
Sandler, Mark
19 publications
ICLR
2025
How New Data Permeates LLM Knowledge and How to Dilute It
Chen Sun
,
Renat Aksitov
,
Andrey Zhmoginov
,
Nolan Andrew Miller
,
Max Vladymyrov
,
Ulrich Rueckert
,
Been Kim
,
Mark Sandler
TMLR
2024
Continual HyperTransformer: A Meta-Learner for Continual Few-Shot Learning
Max Vladymyrov
,
Andrey Zhmoginov
,
Mark Sandler
ICMLW
2024
Efficient Linear System Solver with Transformers
Max Vladymyrov
,
Johannes von Oswald
,
Nolan Andrew Miller
,
Mark Sandler
NeurIPSW
2024
How New Data Pollutes LLM Knowledge and How to Dilute It
Chen Sun
,
Renat Aksitov
,
Andrey Zhmoginov
,
Nolan Andrew Miller
,
Max Vladymyrov
,
Ulrich Rueckert
,
Been Kim
,
Mark Sandler
NeurIPSW
2024
Knowledge Distillation: The Functional Perspective
Israel Mason-Williams
,
Gabryel Mason-Williams
,
Mark Sandler
ICMLW
2024
Learning Fast and Slow: Representations for In-Context Weight Modulation
Andrey Zhmoginov
,
Jihwan Lee
,
Max Vladymyrov
,
Mark Sandler
ICMLW
2024
Learning and Unlearning of Fabricated Knowledge in Language Models
Chen Sun
,
Nolan Andrew Miller
,
Andrey Zhmoginov
,
Max Vladymyrov
,
Mark Sandler
NeurIPS
2024
Linear Transformers Are Versatile In-Context Learners
Max Vladymyrov
,
Johannes von Oswald
,
Mark Sandler
,
Rong Ge
ICMLW
2024
Linear Transformers Are Versatile In-Context Learners
Max Vladymyrov
,
Johannes von Oswald
,
Mark Sandler
,
Rong Ge
ICMLW
2024
Projectable Models: One-Shot Generation of Small Specialized Transformers from Large Ones
Andrey Zhmoginov
,
Jihwan Lee
,
Mark Sandler
CVPR
2023
Decentralized Learning with Multi-Headed Distillation
Andrey Zhmoginov
,
Mark Sandler
,
Nolan Miller
,
Gus Kristiansen
,
Max Vladymyrov
CVPR
2022
Fine-Tuning Image Transformers Using Learnable Memory
Mark Sandler
,
Andrey Zhmoginov
,
Max Vladymyrov
,
Andrew Jackson
ICML
2022
HyperTransformer: Model Generation for Supervised and Semi-Supervised Few-Shot Learning
Andrey Zhmoginov
,
Mark Sandler
,
Maksym Vladymyrov
ICML
2021
Meta-Learning Bidirectional Update Rules
Mark Sandler
,
Max Vladymyrov
,
Andrey Zhmoginov
,
Nolan Miller
,
Tom Madams
,
Andrew Jackson
,
Blaise Agüera Y Arcas
ECML-PKDD
2020
Information-Bottleneck Approach to Salient Region Discovery
Andrey Zhmoginov
,
Ian Fischer
,
Mark Sandler
ECCVW
2020
SpotPatch: Parameter-Efficient Transfer Learning for Mobile Object Detection
Keren Ye
,
Adriana Kovashka
,
Mark Sandler
,
Menglong Zhu
,
Andrew G. Howard
,
Marco Fornoni
ICLR
2019
K for the Price of 1: Parameter-Efficient Multi-Task and Transfer Learning
Pramod Kaushik Mudrakarta
,
Mark Sandler
,
Andrey Zhmoginov
,
Andrew Howard
ICCVW
2019
Non-Discriminative Data or Weak Model? on the Relative Importance of Data and Model Resolution
Mark Sandler
,
Jonathan Baccash
,
Andrey Zhmoginov
,
Andrew Howard
ECCV
2018
NetAdapt: Platform-Aware Neural Network Adaptation for Mobile Applications
Tien-Ju Yang
,
Andrew Howard
,
Bo Chen
,
Xiao Zhang
,
Alec Go
,
Mark Sandler
,
Vivienne Sze
,
Hartwig Adam