Santurkar, Shibani

20 publications

NeurIPS 2023 Data Selection for Language Models via Importance Resampling Sang Michael Xie, Shibani Santurkar, Tengyu Ma, Percy Liang
TMLR 2023 Holistic Evaluation of Language Models Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, Benjamin Newman, Binhang Yuan, Bobby Yan, Ce Zhang, Christian Cosgrove, Christopher D Manning, Christopher Re, Diana Acosta-Navas, Drew A. Hudson, Eric Zelikman, Esin Durmus, Faisal Ladhak, Frieda Rong, Hongyu Ren, Huaxiu Yao, Jue Wang, Keshav Santhanam, Laurel Orr, Lucia Zheng, Mert Yuksekgonul, Mirac Suzgun, Nathan Kim, Neel Guha, Niladri S. Chatterji, Omar Khattab, Peter Henderson, Qian Huang, Ryan Andrew Chi, Sang Michael Xie, Shibani Santurkar, Surya Ganguli, Tatsunori Hashimoto, Thomas Icard, Tianyi Zhang, Vishrav Chaudhary, William Wang, Xuechen Li, Yifan Mai, Yuhui Zhang, Yuta Koreeda
ICLR 2023 Is a Caption Worth a Thousand Images? a Study on Representation Learning Shibani Santurkar, Yann Dubois, Rohan Taori, Percy Liang, Tatsunori Hashimoto
ICML 2023 Whose Opinions Do Language Models Reflect? Shibani Santurkar, Esin Durmus, Faisal Ladhak, Cinoo Lee, Percy Liang, Tatsunori Hashimoto
NeurIPS 2022 3DB: A Framework for Debugging Computer Vision Models Guillaume Leclerc, Hadi Salman, Andrew Ilyas, Sai Vemprala, Logan Engstrom, Vibhav Vineet, Kai Xiao, Pengchuan Zhang, Shibani Santurkar, Greg Yang, Ashish Kapoor, Aleksander Madry
ICLR 2021 BREEDS: Benchmarks for Subpopulation Shift Shibani Santurkar, Dimitris Tsipras, Aleksander Madry
NeurIPS 2021 Editing a Classifier by Rewriting Its Prediction Rules Shibani Santurkar, Dimitris Tsipras, Mahalaxmi Elango, David Bau, Antonio Torralba, Aleksander Madry
ICML 2021 Leveraging Sparse Linear Layers for Debuggable Deep Networks Eric Wong, Shibani Santurkar, Aleksander Madry
ICLR 2020 A Closer Look at Deep Policy Gradients Andrew Ilyas, Logan Engstrom, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry Rudolph, Aleksander Madry
ICML 2020 From ImageNet to Image Classification: Contextualizing Progress on Benchmarks Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Andrew Ilyas, Aleksander Madry
ICML 2020 Identifying Statistical Bias in Dataset Replication Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Jacob Steinhardt, Aleksander Madry
ICLR 2020 Implementation Matters in Deep RL: A Case Study on PPO and TRPO Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry Rudolph, Aleksander Madry
Distill 2019 A Discussion of 'Adversarial Examples Are Not Bugs, They Are Features' Logan Engstrom, Justin Gilmer, Gabriel Goh, Dan Hendrycks, Andrew Ilyas, Aleksander Madry, Reiichiro Nakano, Preetum Nakkiran, Shibani Santurkar, Brandon Tran, Dimitris Tsipras, Eric Wallace
NeurIPS 2019 Adversarial Examples Are Not Bugs, They Are Features Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, Aleksander Madry
NeurIPS 2019 Image Synthesis with a Single (Robust) Classifier Shibani Santurkar, Andrew Ilyas, Dimitris Tsipras, Logan Engstrom, Brandon Tran, Aleksander Madry
ICLR 2019 Robustness May Be at Odds with Accuracy Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, Aleksander Madry
ICML 2018 A Classification-Based Study of Covariate Shift in GAN Distributions Shibani Santurkar, Ludwig Schmidt, Aleksander Madry
NeurIPS 2018 Adversarially Robust Generalization Requires More Data Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, Aleksander Madry
NeurIPS 2018 How Does Batch Normalization Help Optimization? Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, Aleksander Madry
ICML 2017 Deep Tensor Convolution on Multicores David Budden, Alexander Matveev, Shibani Santurkar, Shraman Ray Chaudhuri, Nir Shavit