ML Anthology
Authors
Search
About
Sanyal, Amartya
37 publications
TMLR
2026
Delta-Influence: Identifying Poisons via Influence Functions
Wenjie Li
,
Jiawei Li
,
Pengcheng Zeng
,
Christian Schroeder de Witt
,
Ameya Prabhu
,
Amartya Sanyal
AISTATS
2025
Accuracy on the Wrong Line: On the Pitfalls of Noisy Data for Out-of-Distribution Generalisation
Amartya Sanyal
,
Yaxi Hu
,
Yaodong Yu
,
Yian Ma
,
Yixin Wang
,
Bernhard Schölkopf
NeurIPS
2025
An Iterative Algorithm for Differentially Private $k$-PCA with Adaptive Noise
Johanna Düngler
,
Amartya Sanyal
ICLR
2025
Differentially Private Steering for Large Language Model Alignment
Anmol Goel
,
Yaxi Hu
,
Iryna Gurevych
,
Amartya Sanyal
ICLR
2025
Protecting Against Simultaneous Data Poisoning Attacks
Neel Alex
,
Shoaib Ahmed Siddiqui
,
Amartya Sanyal
,
David Krueger
ICLR
2025
Provable Unlearning in Topic Modeling and Downstream Tasks
Stanley Wei
,
Sadhika Malladi
,
Sanjeev Arora
,
Amartya Sanyal
ICMLW
2024
Accuracy on the Wrong Line: On the Pitfalls of Noisy Data for OOD Generalisation
Amartya Sanyal
,
Yaxi Hu
,
Yaodong Yu
,
Yian Ma
,
Yixin Wang
,
Bernhard Schölkopf
AISTATS
2024
Certified Private Data Release for Sparse Lipschitz Functions
Konstantin Donhauser
,
Johan Lokna
,
Amartya Sanyal
,
March Boedihardjo
,
Robert Hönig
,
Fanny Yang
TMLR
2024
Corrective Machine Unlearning
Shashwat Goel
,
Ameya Prabhu
,
Philip Torr
,
Ponnurangam Kumaraguru
,
Amartya Sanyal
COLT
2024
On the Growth of Mistakes in Differentially Private Online Learning: A Lower Bound Perspective
Daniil Dmitriev
,
Kristóf Szabó
,
Amartya Sanyal
ICML
2024
Provable Privacy with Non-Private Pre-Processing
Yaxi Hu
,
Amartya Sanyal
,
Bernhard Schölkopf
NeurIPSW
2024
Provable Unlearning in Topic Modeling and Downstream Tasks
Stanley Wei
,
Sadhika Malladi
,
Sanjeev Arora
,
Amartya Sanyal
NeurIPS
2024
Robust Mixture Learning When Outliers Overwhelm Small Groups
Daniil Dmitriev
,
Rares-Darius Buhai
,
Stefan Tiegel
,
Alexander Wolters
,
Gleb Novikov
,
Amartya Sanyal
,
David Steurer
,
Fanny Yang
ICML
2024
The Role of Learning Algorithms in Collective Action
Omri Ben-Dov
,
Jake Fawkes
,
Samira Samadi
,
Amartya Sanyal
ICMLW
2024
Unveiling CLIP Dynamics: Linear Mode Connectivity and Generalization
Alireza Abdollahpourrostam
,
Amartya Sanyal
,
Seyed-Mohsen Moosavi-Dezfooli
NeurIPS
2024
What Makes and Breaks Safety Fine-Tuning? a Mechanistic Study
Samyak Jain
,
Ekdeep Singh Lubana
,
Kemal Oksuz
,
Tom Joy
,
Philip H.S. Torr
,
Amartya Sanyal
,
Puneet K. Dokania
ICMLW
2024
What Makes and Breaks Safety Fine-Tuning? a Mechanistic Study
Samyak Jain
,
Ekdeep Singh Lubana
,
Kemal Oksuz
,
Tom Joy
,
Philip Torr
,
Amartya Sanyal
,
Puneet K. Dokania
ICLR
2023
A Law of Adversarial Risk, Interpolation, and Label Noise
Daniel Paleka
,
Amartya Sanyal
NeurIPS
2023
Can Semi-Supervised Learning Use All the Data Effectively? a Lower Bound Perspective
Alexandru Tifrea
,
Gizem Yüce
,
Amartya Sanyal
,
Fanny Yang
TMLR
2023
Catastrophic Overfitting Can Be Induced with Discriminative Non-Robust Features
Guillermo Ortiz-Jimenez
,
Pau de Jorge
,
Amartya Sanyal
,
Adel Bibi
,
Puneet K. Dokania
,
Pascal Frossard
,
Grégory Rogez
,
Philip Torr
ICML
2023
Certifying Ensembles: A General Certification Theory with S-Lipschitzness
Aleksandar Petrov
,
Francisco Eiras
,
Amartya Sanyal
,
Philip Torr
,
Adel Bibi
ICMLW
2023
Certifying Ensembles: A General Certification Theory with S-Lipschitzness
Aleksandar Petrov
,
Francisco Eiras
,
Amartya Sanyal
,
Philip Torr
,
Adel Bibi
ICLR
2023
How Robust Is Unsupervised Representation Learning to Distribution Shift?
Yuge Shi
,
Imant Daunhawer
,
Julia E Vogt
,
Philip Torr
,
Amartya Sanyal
ICLRW
2023
How to Make Semi-Private Learning Effective
Francesco Pinto
,
Yaxi Hu
,
Fanny Yang
,
Amartya Sanyal
NeurIPSW
2022
Certified Defences Hurt Generalisation
Piersilvio De Bartolomeis
,
Jacob Clarysse
,
Fanny Yang
,
Amartya Sanyal
NeurIPSW
2022
Certified Defences Hurt Generalisation
Piersilvio De Bartolomeis
,
Jacob Clarysse
,
Fanny Yang
,
Amartya Sanyal
ICMLW
2022
How Robust Are Pre-Trained Models to Distribution Shift?
Yuge Shi
,
Imant Daunhawer
,
Julia E Vogt
,
Philip Torr
,
Amartya Sanyal
ICMLW
2022
How Robust Are Pre-Trained Models to Distribution Shift?
Yuge Shi
,
Imant Daunhawer
,
Julia E Vogt
,
Philip Torr
,
Amartya Sanyal
UAI
2022
How Unfair Is Private Learning?
Amartya Sanyal
,
Yaxi Hu
,
Fanny Yang
NeurIPS
2022
Make Some Noise: Reliable and Efficient Single-Step Adversarial Training
Pau de Jorge Aranda
,
Adel Bibi
,
Riccardo Volpi
,
Amartya Sanyal
,
Philip Torr
,
Gregory Rogez
,
Puneet Dokania
COLT
2022
Open Problem: Do You Pay for Privacy in Online Learning?
Amartya Sanyal
,
Giorgia Ramponi
ICLR
2021
How Benign Is Benign Overfitting ?
Amartya Sanyal
,
Puneet K. Dokania
,
Varun Kanade
,
Philip Torr
ICLR
2021
Progressive Skeletonization: Trimming More Fat from a Network at Initialization
Pau de Jorge
,
Amartya Sanyal
,
Harkirat Behl
,
Philip Torr
,
Grégory Rogez
,
Puneet K. Dokania
NeurIPS
2020
Calibrating Deep Neural Networks Using Focal Loss
Jishnu Mukhoti
,
Viveka Kulharia
,
Amartya Sanyal
,
Stuart Golodetz
,
Philip Torr
,
Puneet Dokania
ICLR
2020
Stable Rank Normalization for Improved Generalization in Neural Networks and GANs
Amartya Sanyal
,
Philip H. S. Torr
,
Puneet K. Dokania
MLJ
2018
Optimizing Non-Decomposable Measures with Deep Networks
Amartya Sanyal
,
Pawan Kumar
,
Purushottam Kar
,
Sanjay Chawla
,
Fabrizio Sebastiani
ICML
2018
TAPAS: Tricks to Accelerate (encrypted) Prediction as a Service
Amartya Sanyal
,
Matt Kusner
,
Adria Gascon
,
Varun Kanade