Schaal, Stefan

28 publications

CoRL 2024 RT-Sketch: Goal-Conditioned Imitation Learning from Hand-Drawn Sketches Priya Sundaresan, Quan Vuong, Jiayuan Gu, Peng Xu, Ted Xiao, Sean Kirmani, Tianhe Yu, Michael Stark, Ajinkya Jain, Karol Hausman, Dorsa Sadigh, Jeannette Bohg, Stefan Schaal
ICLR 2022 Wish You Were Here: Hindsight Goal Selection for Long-Horizon Dexterous Manipulation Todor Davchev, Oleg Olegovich Sushkov, Jean-Baptiste Regli, Stefan Schaal, Yusuf Aytar, Markus Wulfmeier, Jon Scholz
NeurIPSW 2021 Wish You Were Here: Hindsight Goal Selection for Long-Horizon Dexterous Manipulation Todor Davchev, Oleg Sushkov, Jean-Baptiste Regli, Stefan Schaal, Yusuf Aytar, Markus Wulfmeier, Jon Scholz
ICML 2018 Probabilistic Recurrent State-Space Models Andreas Doerr, Christian Daniel, Martin Schiegg, Nguyen-Tuong Duy, Stefan Schaal, Marc Toussaint, Trimpe Sebastian
ICML 2017 Combining Model-Based and Model-Free Updates for Trajectory-Centric Reinforcement Learning Yevgen Chebotar, Karol Hausman, Marvin Zhang, Gaurav Sukhatme, Stefan Schaal, Sergey Levine
NeurIPS 2017 Multi-Modal Imitation Learning from Unstructured Demonstrations Using Generative Adversarial Nets Karol Hausman, Yevgen Chebotar, Stefan Schaal, Gaurav Sukhatme, Joseph J. Lim
CoRL 2017 Optimizing Long-Term Predictions for Model-Based Policy Search Andreas Doerr, Christian Daniel, Duy Nguyen-Tuong, Alonso Marco, Stefan Schaal, Marc Toussaint, Sebastian Trimpe
NeurIPS 2014 Incremental Local Gaussian Regression Franziska Meier, Philipp Hennig, Stefan Schaal
ICML 2012 Learning Force Control Policies for Compliant Robotic Manipulation Mrinal Kalakrishnan, Ludovic Righetti, Peter Pastor, Stefan Schaal
AISTATS 2012 Movement Segmentation and Recognition for Imitation Learning Franziska Meier, Evangelos Theodorou, Stefan Schaal
JMLR 2010 A Generalized Path Integral Control Approach to Reinforcement Learning Evangelos Theodorou, Jonas Buchli, Stefan Schaal
AISTATS 2010 Learning Policy Improvements with Path Integrals Evangelos Theodorou, Jonas Buchli, Stefan Schaal
MLOSS 2008 A Library for Locally Weighted Projection Regression Stefan Klanke, Sethu Vijayakumar, Stefan Schaal
NeurIPS 2008 Bayesian Kernel Shaping for Learning Control Jo-anne Ting, Mrinal Kalakrishnan, Sethu Vijayakumar, Stefan Schaal
IJCAI 2007 Kernel Carpentry for Online Regression Using Randomly Varying Coefficient Model Narayanan Unny Edakunni, Stefan Schaal, Sethu Vijayakumar
ICML 2007 Reinforcement Learning by Reward-Weighted Regression for Operational Space Control Jan Peters, Stefan Schaal
ICML 2006 Bayesian Regression with Input Noise for High Dimensional Data Jo-Anne Ting, Aaron D'Souza, Stefan Schaal
ECML-PKDD 2005 Natural Actor-Critic Jan Peters, Sethu Vijayakumar, Stefan Schaal
ICML 2004 The Bayesian Backfitting Relevance Vector Machine Aaron D'Souza, Sethu Vijayakumar, Stefan Schaal
NeurIPS 2002 Learning Attractor Landscapes for Learning Motor Primitives Auke J. Ijspeert, Jun Nakanishi, Stefan Schaal
ICML 2000 Locally Weighted Projection Regression: Incremental Real Time Learning in High Dimensional Space Sethu Vijayakumar, Stefan Schaal
ICML 2000 On-Line Learning for Humanoid Robot Systems Jörg Conradt, Gaurav Tevatia, Sethu Vijayakumar, Stefan Schaal
NeCo 1998 Constructive Incremental Learning from Only Local Information Stefan Schaal, Christopher G. Atkeson
NeurIPS 1997 Local Dimensionality Reduction Stefan Schaal, Sethu Vijayakumar, Christopher G. Atkeson
ICML 1997 Robot Learning from Demonstration Christopher G. Atkeson, Stefan Schaal
NeurIPS 1996 Learning from Demonstration Stefan Schaal
NeurIPS 1995 From Isolation to Cooperation: An Alternative View of a System of Experts Stefan Schaal, Christopher G. Atkeson
NeurIPS 1993 Assessing the Quality of Learned Local Models Stefan Schaal, Christopher G. Atkeson