Schapire, Robert E.

103 publications

NeurIPS 2025 Efficient and Near-Optimal Algorithm for Contextual Dueling Bandits with Offline Regression Oracles Aadirupa Saha, Robert E. Schapire
ICML 2024 Provable Interactive Learning with Hindsight Instruction Feedback Dipendra Misra, Aldo Pacchiano, Robert E. Schapire
NeurIPS 2023 A Unified Model and Dimension for Interactive Estimation Nataly Brukhim, Miro Dudik, Aldo Pacchiano, Robert E. Schapire
NeurIPS 2022 Provably Sample-Efficient RL with Side Information About Latent Dynamics Yao Liu, Dipendra Misra, Miro Dudik, Robert E. Schapire
NeurIPS 2021 Bayesian Decision-Making Under Misspecified Priors with Applications to Meta-Learning Max Simchowitz, Christopher Tosh, Akshay Krishnamurthy, Daniel J. Hsu, Thodoris Lykouris, Miro Dudik, Robert E. Schapire
NeurIPS 2021 Multiclass Boosting and the Cost of Weak Learning Nataly Brukhim, Elad Hazan, Shay Moran, Indraneel Mukherjee, Robert E. Schapire
COLT 2020 Gradient Descent Follows the Regularization Path for General Losses Ziwei Ji, Miroslav Dudík, Robert E. Schapire, Matus Telgarsky
ALT 2020 Interactive Learning of a Dynamic Structure Ehsan Emamjomeh-Zadeh, David Kempe, Mohammad Mahdian, Robert E. Schapire
NeurIPS 2019 Reinforcement Learning with Convex Constraints Sobhan Miryoosefi, Kianté Brantley, Hal Daume Iii, Miro Dudik, Robert E. Schapire
NeurIPS 2018 On Oracle-Efficient PAC RL with Rich Observations Christoph Dann, Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, Robert E. Schapire
ALT 2018 Robust Inference for Multiclass Classification Uriel Feige, Yishay Mansour, Robert E. Schapire
ICML 2017 Contextual Decision Processes with Low Bellman Rank Are PAC-Learnable Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, Robert E. Schapire
COLT 2017 Corralling a Band of Bandit Algorithms Alekh Agarwal, Haipeng Luo, Behnam Neyshabur, Robert E. Schapire
COLT 2017 Open Problem: First-Order Regret Bounds for Contextual Bandits Alekh Agarwal, Akshay Krishnamurthy, John Langford, Haipeng Luo, Robert E. Schapire
NeurIPS 2016 Improved Regret Bounds for Oracle-Based Adversarial Contextual Bandits Vasilis Syrgkanis, Haipeng Luo, Akshay Krishnamurthy, Robert E. Schapire
COLT 2016 Instance-Dependent Regret Bounds for Dueling Bandits Akshay Balsubramani, Zohar S. Karnin, Robert E. Schapire, Masrour Zoghi
COLT 2015 Achieving All with No Parameters: AdaNormalHedge Haipeng Luo, Robert E. Schapire
IJCAI 2015 Collaborative Place Models Berk Kapicioglu, David S. Rosenberg, Robert E. Schapire, Tony Jebara
COLT 2015 Contextual Dueling Bandits Miroslav Dudík, Katja Hofmann, Robert E. Schapire, Aleksandrs Slivkins, Masrour Zoghi
NeurIPS 2015 Efficient and Parsimonious Agnostic Active Learning Tzu-Kuo Huang, Alekh Agarwal, Daniel J. Hsu, John Langford, Robert E. Schapire
NeurIPS 2015 Fast Convergence of Regularized Learning in Games Vasilis Syrgkanis, Alekh Agarwal, Haipeng Luo, Robert E. Schapire
COLT 2015 Learning and Inference in the Presence of Corrupted Inputs Uriel Feige, Yishay Mansour, Robert E. Schapire
NeurIPS 2014 A Drifting-Games Analysis for Online Learning and Applications to Boosting Haipeng Luo, Robert E. Schapire
AISTATS 2014 Collaborative Ranking for Local Preferences Berk Kapicioglu, David S. Rosenberg, Robert E. Schapire, Tony Jebara
COLT 2014 Robust Multi-Objective Learning with Mentor Feedback Alekh Agarwal, Ashwinkumar Badanidiyuru, Miroslav Dudík, Robert E. Schapire, Aleksandrs Slivkins
JMLR 2013 A Theory of Multiclass Boosting Indraneel Mukherjee, Robert E. Schapire
JMLR 2013 The Rate of Convergence of AdaBoost Indraneel Mukherjee, Cynthia Rudin, Robert E. Schapire
COLT 2012 Open Problem: Does AdaBoost Always Cycle? Cynthia Rudin, Robert E. Schapire, Ingrid Daubechies
COLT 2011 The Rate of Convergence of Adaboost Indraneel Mukherjee, Cynthia Rudin, Robert E. Schapire
NeurIPS 2010 A Reduction from Apprenticeship Learning to Classification Umar Syed, Robert E. Schapire
NeurIPS 2010 A Theory of Multiclass Boosting Indraneel Mukherjee, Robert E. Schapire
UAI 2010 Combining Spatial and Telemetric Features for Learning Animal Movement Models Berk Kapicioglu, Robert E. Schapire, Martin Wikelski, Tamara Broderick
NeurIPS 2010 Non-Stochastic Bandit Slate Problems Satyen Kale, Lev Reyzin, Robert E. Schapire
COLT 2010 The Convergence Rate of AdaBoost Robert E. Schapire
JMLR 2009 Margin-Based Ranking and an Equivalence Between AdaBoost and RankBoost Cynthia Rudin, Robert E. Schapire
ICML 2008 Apprenticeship Learning Using Linear Programming Umar Syed, Michael H. Bowling, Robert E. Schapire
ALT 2008 Learning with Continuous Experts Using Drifting Games Indraneel Mukherjee, Robert E. Schapire
MLJ 2008 On Reoptimizing Multi-Class Classifiers Chris Bourke, Kun Deng, Stephen D. Scott, Robert E. Schapire, N. V. Vinodchandran
NeurIPS 2007 A Game-Theoretic Approach to Apprenticeship Learning Umar Syed, Robert E. Schapire
NeurIPS 2007 FilterBoost: Regression and Classification on Large Datasets Joseph K. Bradley, Robert E. Schapire
ICML 2007 Hierarchical Maximum Entropy Density Estimation Miroslav Dudík, David M. Blei, Robert E. Schapire
UAI 2007 Imitation Learning with a Value-Based Prior Umar Syed, Robert E. Schapire
AISTATS 2007 Maximum Entropy Correlated Equilibria Luis E. Ortiz, Robert E. Schapire, Sham M. Kakade
JMLR 2007 Maximum Entropy Density Estimation with Generalized Regularization and an Application to Species Distribution Modeling Miroslav Dudík, Steven J. Phillips, Robert E. Schapire
ICML 2006 Algorithms for Portfolio Management Based on the Newton Method Amit Agarwal, Elad Hazan, Satyen Kale, Robert E. Schapire
ICML 2006 How Boosting the Margin Can Also Boost Classifier Complexity Lev Reyzin, Robert E. Schapire
COLT 2006 Maximum Entropy Distribution Estimation with Generalized Regularization Miroslav Dudík, Robert E. Schapire
NeurIPS 2005 Convergence and Consistency of Regularized Boosting Algorithms with Stationary B-Mixing Observations Aurelie C. Lozano, Sanjeev R. Kulkarni, Robert E. Schapire
NeurIPS 2005 Correcting Sample Selection Bias in Maximum Entropy Density Estimation Miroslav Dudík, Steven J. Phillips, Robert E. Schapire
COLT 2005 Margin-Based Ranking Meets Boosting in the Middle Cynthia Rudin, Corinna Cortes, Mehryar Mohri, Robert E. Schapire
ICML 2004 A Maximum Entropy Approach to Species Distribution Modeling Steven J. Phillips, Miroslav Dudík, Robert E. Schapire
COLT 2004 Boosting Based on a Smooth Margin Cynthia Rudin, Robert E. Schapire, Ingrid Daubechies
COLT 2004 Performance Guarantees for Regularized Maximum Entropy Density Estimation Miroslav Dudík, Steven J. Phillips, Robert E. Schapire
JMLR 2004 The Dynamics of AdaBoost: Cyclic Behavior and Convergence of Margins Cynthia Rudin, Ingrid Daubechies, Robert E. Schapire
JMLR 2003 An Efficient Boosting Algorithm for Combining Preferences Yoav Freund, Raj Iyer, Robert E. Schapire, Yoram Singer
JAIR 2003 Decision-Theoretic Bidding Based on Learned Density Models in Simultaneous, Interacting Auctions Peter Stone, Robert E. Schapire, Michael L. Littman, János A. Csirik, David A. McAllester
NeurIPS 2003 On the Dynamics of Boosting Cynthia Rudin, Ingrid Daubechies, Robert E. Schapire
UAI 2002 Advances in Boosting Robert E. Schapire
ICML 2002 Incorporating Prior Knowledge into Boosting Robert E. Schapire, Marie Rochery, Mazin G. Rahim, Narendra K. Gupta
MLJ 2002 Logistic Regression, AdaBoost and Bregman Distances Michael Collins, Robert E. Schapire, Yoram Singer
ICML 2002 Modeling Auction Price Uncertainty Using Boosting-Based Conditional Density Estimation Robert E. Schapire, Peter Stone, David A. McAllester, Michael L. Littman, János A. Csirik
NeurIPS 2001 A Generalization of Principal Components Analysis to the Exponential Family Michael Collins, S. Dasgupta, Robert E. Schapire
MLJ 2001 Drifting Games Robert E. Schapire
AISTATS 2001 Why Averaging Classifiers Can Protect Against Overfitting Yoav Freund, Yishay Mansour, Robert E. Schapire
MLJ 2000 BoosTexter: A Boosting-Based System for Text Categorization Robert E. Schapire, Yoram Singer
COLT 2000 Logistic Regression, AdaBoost and Bregman Distances Michael Collins, Robert E. Schapire, Yoram Singer
COLT 2000 On the Convergence Rate of Good-Turing Estimators David A. McAllester, Robert E. Schapire
JMLR 2000 Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers Erin L. Allwein, Robert E. Schapire, Yoram Singer
ICML 2000 Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers Erin L. Allwein, Robert E. Schapire, Yoram Singer
IJCAI 1999 A Brief Introduction to Boosting Robert E. Schapire
COLT 1999 Drifting Games Robert E. Schapire
MLJ 1999 Improved Boosting Algorithms Using Confidence-Rated Predictions Robert E. Schapire, Yoram Singer
MLJ 1999 Large Margin Classification Using the Perceptron Algorithm Yoav Freund, Robert E. Schapire
JAIR 1999 Learning to Order Things William W. Cohen, Robert E. Schapire, Yoram Singer
ALT 1999 Theoretical Views of Boosting and Applications Robert E. Schapire
ICML 1998 An Efficient Boosting Algorithm for Combining Preferences Yoav Freund, Raj D. Iyer, Robert E. Schapire, Yoram Singer
COLT 1998 Improved Boosting Algorithms Using Confidence-Rated Predictions Robert E. Schapire, Yoram Singer
COLT 1998 Large Margin Classification Using the Perceptron Algorithm Yoav Freund, Robert E. Schapire
MLJ 1997 A Comparison of New and Old Algorithms for a Mixture Estimation Problem David P. Helmbold, Robert E. Schapire, Yoram Singer, Manfred K. Warmuth
ICML 1997 Boosting the Margin: A New Explanation for the Effectiveness of Voting Methods Robert E. Schapire, Yoav Freund, Peter Barlett, Wee Sun Lee
NeurIPS 1997 Learning to Order Things William W. Cohen, Robert E. Schapire, Yoram Singer
MLJ 1997 Predicting Nearly as Well as the Best Pruning of a Decision Tree David P. Helmbold, Robert E. Schapire
COLT 1997 Proceedings of the Tenth Annual Conference on Computational Learning Theory, COLT 1997, Nashville, Tennessee, USA, July 6-9, 1997 Yoav Freund, Robert E. Schapire
ICML 1997 Using Output Codes to Boost Multiclass Learning Problems Robert E. Schapire
ICML 1996 Experiments with a New Boosting Algorithm Yoav Freund, Robert E. Schapire
COLT 1996 Game Theory, On-Line Prediction and Boosting Yoav Freund, Robert E. Schapire
MLJ 1996 On the Worst-Case Analysis of Temporal-Difference Learning Algorithms Robert E. Schapire, Manfred K. Warmuth
ICML 1996 On-Line Portfolio Selection Using Multiplicative Updates David P. Helmbold, Robert E. Schapire, Yoram Singer, Manfred K. Warmuth
COLT 1995 A Comparison of New and Old Algorithms for a Mixture Estimation Problem David P. Helmbold, Yoram Singer, Robert E. Schapire, Manfred K. Warmuth
COLT 1995 Predicting Nearly as Well as the Best Pruning of a Decision Tree David P. Helmbold, Robert E. Schapire
MLJ 1994 Bounds on the Sample Complexity of Bayesian Learning Using Information Theory and the VC Dimension David Haussler, Michael J. Kearns, Robert E. Schapire
MLJ 1994 Learning Probabilistic Read-Once Formulas on Product Distributions Robert E. Schapire
ICML 1994 On the Worst-Case Analysis of Temporal-Difference Learning Algorithms Robert E. Schapire, Manfred K. Warmuth
MLJ 1994 Toward Efficient Agnostic Learning Michael J. Kearns, Robert E. Schapire, Linda Sellie
COLT 1993 Learning Sparse Multivariate Polynomials over a Field with Queries and Counterexamples Robert E. Schapire, Linda Sellie
COLT 1992 Toward Efficient Agnostic Learning Michael J. Kearns, Robert E. Schapire, Linda Sellie
COLT 1991 Bounds on the Sample Complexity of Bayesian Learning Using Information Theory and the VC Dimension David Haussler, Michael J. Kearns, Robert E. Schapire
COLT 1991 Learning Probabilistic Read-Once Formulas on Product Distributions Robert E. Schapire
COLT 1990 Efficient Distribution-Free Learning of Probabilistic Concepts (Abstract) Michael J. Kearns, Robert E. Schapire
COLT 1990 Exact Identification of Circuits Using Fixed Points of Amplification Functions (Abstract) Sally A. Goldman, Michael J. Kearns, Robert E. Schapire
COLT 1990 On the Sample Complexity of Weak Learning Sally A. Goldman, Michael J. Kearns, Robert E. Schapire
COLT 1990 Pattern Languages Are Not Learnable Robert E. Schapire
MLJ 1990 The Strength of Weak Learnability Robert E. Schapire