Schmidt, Ludwig

83 publications

CVPR 2025 Automated Generation of Challenging Multiple-Choice Questions for Vision Language Model Evaluation Yuhui Zhang, Yuchang Su, Yiming Liu, Xiaohan Wang, James Burgess, Elaine Sui, Chenyu Wang, Josiah Aklilu, Alejandro Lozano, Anjiang Wei, Ludwig Schmidt, Serena Yeung-Levy
NeurIPS 2025 Datasets, Documents, and Repetitions: The Practicalities of Unequal Data Quality Alex Fang, Hadi Pouransari, Matt Jordan, Alexander T Toshev, Vaishaal Shankar, Ludwig Schmidt, Tom Gunter
ICLR 2025 Language Models Scale Reliably with Over-Training and on Downstream Tasks Samir Yitzhak Gadre, Georgios Smyrnis, Vaishaal Shankar, Suchin Gururangan, Mitchell Wortsman, Rulin Shao, Jean Mercat, Alex Fang, Jeffrey Li, Sedrick Keh, Rui Xin, Marianna Nezhurina, Igor Vasiljevic, Luca Soldaini, Jenia Jitsev, Alex Dimakis, Gabriel Ilharco, Pang Wei Koh, Shuran Song, Thomas Kollar, Yair Carmon, Achal Dave, Reinhard Heckel, Niklas Muennighoff, Ludwig Schmidt
NeurIPS 2025 SWE-Smith: Scaling Data for Software Engineering Agents John Yang, Kilian Lieret, Carlos E Jimenez, Alexander Wettig, Kabir Khandpur, Yanzhe Zhang, Binyuan Hui, Ofir Press, Ludwig Schmidt, Diyi Yang
ICLR 2025 Should VLMs Be Pre-Trained with Image Data? Sedrick Keh, Jean Mercat, Samir Yitzhak Gadre, Kushal Arora, Igor Vasiljevic, Benjamin Burchfiel, Shuran Song, Russ Tedrake, Thomas Kollar, Ludwig Schmidt, Achal Dave
NeurIPS 2024 A Sober Look at the Robustness of CLIPs to Spurious Features Qizhou Wang, Yong Lin, Yongqiang Chen, Ludwig Schmidt, Bo Han, Tong Zhang
ICLR 2024 Data Filtering Networks Alex Fang, Albin Madappally Jose, Amit Jain, Ludwig Schmidt, Alexander T Toshev, Vaishaal Shankar
NeurIPS 2024 DataComp-LM: In Search of the Next Generation of Training Sets for Language Models Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Gadre, Hritik Bansal, Etash Guha, Sedrick Keh, Kushal Arora, Saurabh Garg, Rui Xin, Niklas Muennighoff, Reinhard Heckel, Jean Mercat, Mayee Chen, Suchin Gururangan, Mitchell Wortsman, Alon Albalak, Yonatan Bitton, Marianna Nezhurina, Amro Abbas, Cheng-Yu Hsieh, Dhruba Ghosh, Josh Gardner, Maciej Kilian, Hanlin Zhang, Rulin Shao, Sarah Pratt, Sunny Sanyal, Gabriel Ilharco, Giannis Daras, Kalyani Marathe, Aaron Gokaslan, Jieyu Zhang, Khyathi Chandu, Thao Nguyen, Igor Vasiljevic, Sham Kakade, Shuran Song, Sujay Sanghavi, Fartash Faghri, Sewoong Oh, Luke Zettlemoyer, Kyle Lo, Alaaeldin El-Nouby, Hadi Pouransari, Alexander Toshev, Stephanie Wang, Dirk Groeneveld, Luca Soldaini, Pang Wei Koh, Jenia Jitsev, Thomas Kollar, Alexandros G. Dimakis, Yair Carmon, Achal Dave, Ludwig Schmidt, Vaishaal Shankar
ECCV 2024 Getting It Right: Improving Spatial Consistency in Text-to-Image Models Agneet Chatterjee, Gabriela Ben Melech Stan, Estelle Guez Aflalo, Sayak Paul, Dhruba Ghosh, Tejas Gokhale, Ludwig Schmidt, Hanna Hajishirzi, Vasudev Lal, Chitta R Baral, Yezhou Yang
NeurIPS 2024 Large Scale Transfer Learning for Tabular Data via Language Modeling Josh Gardner, Juan C. Perdomo, Ludwig Schmidt
NeurIPS 2024 MINT-1T: Scaling Open-Source Multimodal Data by 10x: A Multimodal Dataset with One Trillion Tokens Anas Awadalla, Le Xue, Oscar Lo, Manli Shu, Hannah Lee, Etash Guha, Matt Jordan, Sheng Shen, Mohamed Awadalla, Silvio Savarese, Caiming Xiong, Ran Xu, Yejin Choi, Ludwig Schmidt
NeurIPS 2024 Multilingual Diversity Improves Vision-Language Representations Thao Nguyen, Matthew Wallingford, Sebastin Santy, Wei-Chiu Ma, Sewoong Oh, Ludwig Schmidt, Pang Wei Koh, Ranjay Krishna
NeurIPS 2024 Resolving Discrepancies in Compute-Optimal Scaling of Language Models Tomer Porian, Mitchell Wortsman, Jenia Jitsev, Ludwig Schmidt, Yair Carmon
ICMLW 2024 Resolving Discrepancies in Compute-Optimal Scaling of Language Models Tomer Porian, Mitchell Wortsman, Jenia Jitsev, Ludwig Schmidt, Yair Carmon
NeurIPS 2024 Why Are Visually-Grounded Language Models Bad at Image Classification? Yuhui Zhang, Alyssa Unell, Xiaohan Wang, Dhruba Ghosh, Yuchang Su, Ludwig Schmidt, Serena Yeung-Levy
NeurIPS 2023 Are Aligned Neural Networks Adversarially Aligned? Nicholas Carlini, Milad Nasr, Christopher A. Choquette-Choo, Matthew Jagielski, Irena Gao, Pang Wei W Koh, Daphne Ippolito, Florian Tramer, Ludwig Schmidt
NeurIPS 2023 Benchmarking Distribution Shift in Tabular Data with TableShift Josh Gardner, Zoran Popovic, Ludwig Schmidt
TMLR 2023 Beyond the Imitation Game: Quantifying and Extrapolating the Capabilities of Language Models Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch, Adam R. Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, Agnieszka Kluska, Aitor Lewkowycz, Akshat Agarwal, Alethea Power, Alex Ray, Alex Warstadt, Alexander W. Kocurek, Ali Safaya, Ali Tazarv, Alice Xiang, Alicia Parrish, Allen Nie, Aman Hussain, Amanda Askell, Amanda Dsouza, Ambrose Slone, Ameet Rahane, Anantharaman S. Iyer, Anders Johan Andreassen, Andrea Madotto, Andrea Santilli, Andreas Stuhlmüller, Andrew M. Dai, Andrew La, Andrew Kyle Lampinen, Andy Zou, Angela Jiang, Angelica Chen, Anh Vuong, Animesh Gupta, Anna Gottardi, Antonio Norelli, Anu Venkatesh, Arash Gholamidavoodi, Arfa Tabassum, Arul Menezes, Arun Kirubarajan, Asher Mullokandov, Ashish Sabharwal, Austin Herrick, Avia Efrat, Aykut Erdem, Ayla Karakaş, B. Ryan Roberts, Bao Sheng Loe, Barret Zoph, Bartłomiej Bojanowski, Batuhan Özyurt, Behnam Hedayatnia, Behnam Neyshabur, Benjamin Inden, Benno Stein, Berk Ekmekci, Bill Yuchen Lin, Blake Howald, Bryan Orinion, Cameron Diao, Cameron Dour, Catherine Stinson, Cedrick Argueta, Cesar Ferri, Chandan Singh, Charles Rathkopf, Chenlin Meng, Chitta Baral, Chiyu Wu, Chris Callison-Burch, Christopher Waites, Christian Voigt, Christopher D Manning, Christopher Potts, Cindy Ramirez, Clara E. Rivera, Clemencia Siro, Colin Raffel, Courtney Ashcraft, Cristina Garbacea, Damien Sileo, Dan Garrette, Dan Hendrycks, Dan Kilman, Dan Roth, C. Daniel Freeman, Daniel Khashabi, Daniel Levy, Daniel Moseguí González, Danielle Perszyk, Danny Hernandez, Danqi Chen, Daphne Ippolito, Dar Gilboa, David Dohan, David Drakard, David Jurgens, Debajyoti Datta, Deep Ganguli, Denis Emelin, Denis Kleyko, Deniz Yuret, Derek Chen, Derek Tam, Dieuwke Hupkes, Diganta Misra, Dilyar Buzan, Dimitri Coelho Mollo, Diyi Yang, Dong-Ho Lee, Dylan Schrader, Ekaterina Shutova, Ekin Dogus Cubuk, Elad Segal, Eleanor Hagerman, Elizabeth Barnes, Elizabeth Donoway, Ellie Pavlick, Emanuele Rodolà, Emma Lam, Eric Chu, Eric Tang, Erkut Erdem, Ernie Chang, Ethan A Chi, Ethan Dyer, Ethan Jerzak, Ethan Kim, Eunice Engefu Manyasi, Evgenii Zheltonozhskii, Fanyue Xia, Fatemeh Siar, Fernando Martínez-Plumed, Francesca Happé, Francois Chollet, Frieda Rong, Gaurav Mishra, Genta Indra Winata, Gerard de Melo, Germàn Kruszewski, Giambattista Parascandolo, Giorgio Mariani, Gloria Xinyue Wang, Gonzalo Jaimovitch-Lopez, Gregor Betz, Guy Gur-Ari, Hana Galijasevic, Hannah Kim, Hannah Rashkin, Hannaneh Hajishirzi, Harsh Mehta, Hayden Bogar, Henry Francis Anthony Shevlin, Hinrich Schuetze, Hiromu Yakura, Hongming Zhang, Hugh Mee Wong, Ian Ng, Isaac Noble, Jaap Jumelet, Jack Geissinger, Jackson Kernion, Jacob Hilton, Jaehoon Lee, Jaime Fernández Fisac, James B Simon, James Koppel, James Zheng, James Zou, Jan Kocon, Jana Thompson, Janelle Wingfield, Jared Kaplan, Jarema Radom, Jascha Sohl-Dickstein, Jason Phang, Jason Wei, Jason Yosinski, Jekaterina Novikova, Jelle Bosscher, Jennifer Marsh, Jeremy Kim, Jeroen Taal, Jesse Engel, Jesujoba Alabi, Jiacheng Xu, Jiaming Song, Jillian Tang, Joan Waweru, John Burden, John Miller, John U. Balis, Jonathan Batchelder, Jonathan Berant, Jörg Frohberg, Jos Rozen, Jose Hernandez-Orallo, Joseph Boudeman, Joseph Guerr, Joseph Jones, Joshua B. Tenenbaum, Joshua S. Rule, Joyce Chua, Kamil Kanclerz, Karen Livescu, Karl Krauth, Karthik Gopalakrishnan, Katerina Ignatyeva, Katja Markert, Kaustubh Dhole, Kevin Gimpel, Kevin Omondi, Kory Wallace Mathewson, Kristen Chiafullo, Ksenia Shkaruta, Kumar Shridhar, Kyle McDonell, Kyle Richardson, Laria Reynolds, Leo Gao, Li Zhang, Liam Dugan, Lianhui Qin, Lidia Contreras-Ochando, Louis-Philippe Morency, Luca Moschella, Lucas Lam, Lucy Noble, Ludwig Schmidt, Luheng He, Luis Oliveros-Colón, Luke Metz, Lütfi Kerem Senel, Maarten Bosma, Maarten Sap, Maartje Ter Hoeve, Maheen Farooqi, Manaal Faruqui, Mantas Mazeika, Marco Baturan, Marco Marelli, Marco Maru, Maria Jose Ramirez-Quintana, Marie Tolkiehn, Mario Giulianelli, Martha Lewis, Martin Potthast, Matthew L Leavitt, Matthias Hagen, Mátyás Schubert, Medina Orduna Baitemirova, Melody Arnaud, Melvin McElrath, Michael Andrew Yee, Michael Cohen, Michael Gu, Michael Ivanitskiy, Michael Starritt, Michael Strube, Michał Swędrowski, Michele Bevilacqua, Michihiro Yasunaga, Mihir Kale, Mike Cain, Mimee Xu, Mirac Suzgun, Mitch Walker, Mo Tiwari, Mohit Bansal, Moin Aminnaseri, Mor Geva, Mozhdeh Gheini, Mukund Varma T, Nanyun Peng, Nathan Andrew Chi, Nayeon Lee, Neta Gur-Ari Krakover, Nicholas Cameron, Nicholas Roberts, Nick Doiron, Nicole Martinez, Nikita Nangia, Niklas Deckers, Niklas Muennighoff, Nitish Shirish Keskar, Niveditha S. Iyer, Noah Constant, Noah Fiedel, Nuan Wen, Oliver Zhang, Omar Agha, Omar Elbaghdadi, Omer Levy, Owain Evans, Pablo Antonio Moreno Casares, Parth Doshi, Pascale Fung, Paul Pu Liang, Paul Vicol, Pegah Alipoormolabashi, Peiyuan Liao, Percy Liang, Peter W Chang, Peter Eckersley, Phu Mon Htut, Pinyu Hwang, Piotr Miłkowski, Piyush Patil, Pouya Pezeshkpour, Priti Oli, Qiaozhu Mei, Qing Lyu, Qinlang Chen, Rabin Banjade, Rachel Etta Rudolph, Raefer Gabriel, Rahel Habacker, Ramon Risco, Raphaël Millière, Rhythm Garg, Richard Barnes, Rif A. Saurous, Riku Arakawa, Robbe Raymaekers, Robert Frank, Rohan Sikand, Roman Novak, Roman Sitelew, Ronan Le Bras, Rosanne Liu, Rowan Jacobs, Rui Zhang, Russ Salakhutdinov, Ryan Andrew Chi, Seungjae Ryan Lee, Ryan Stovall, Ryan Teehan, Rylan Yang, Sahib Singh, Saif M. Mohammad, Sajant Anand, Sam Dillavou, Sam Shleifer, Sam Wiseman, Samuel Gruetter, Samuel R. Bowman, Samuel Stern Schoenholz, Sanghyun Han, Sanjeev Kwatra, Sarah A. Rous, Sarik Ghazarian, Sayan Ghosh, Sean Casey, Sebastian Bischoff, Sebastian Gehrmann, Sebastian Schuster, Sepideh Sadeghi, Shadi Hamdan, Sharon Zhou, Shashank Srivastava, Sherry Shi, Shikhar Singh, Shima Asaadi, Shixiang Shane Gu, Shubh Pachchigar, Shubham Toshniwal, Shyam Upadhyay, Shyamolima Shammie Debnath, Siamak Shakeri, Simon Thormeyer, Simone Melzi, Siva Reddy, Sneha Priscilla Makini, Soo-Hwan Lee, Spencer Torene, Sriharsha Hatwar, Stanislas Dehaene, Stefan Divic, Stefano Ermon, Stella Biderman, Stephanie Lin, Stephen Prasad, Steven Piantadosi, Stuart Shieber, Summer Misherghi, Svetlana Kiritchenko, Swaroop Mishra, Tal Linzen, Tal Schuster, Tao Li, Tao Yu, Tariq Ali, Tatsunori Hashimoto, Te-Lin Wu, Théo Desbordes, Theodore Rothschild, Thomas Phan, Tianle Wang, Tiberius Nkinyili, Timo Schick, Timofei Kornev, Titus Tunduny, Tobias Gerstenberg, Trenton Chang, Trishala Neeraj, Tushar Khot, Tyler Shultz, Uri Shaham, Vedant Misra, Vera Demberg, Victoria Nyamai, Vikas Raunak, Vinay Venkatesh Ramasesh, Vinay Uday Prabhu, Vishakh Padmakumar, Vivek Srikumar, William Fedus, William Saunders, William Zhang, Wout Vossen, Xiang Ren, Xiaoyu Tong, Xinran Zhao, Xinyi Wu, Xudong Shen, Yadollah Yaghoobzadeh, Yair Lakretz, Yangqiu Song, Yasaman Bahri, Yejin Choi, Yichi Yang, Sophie Hao, Yifu Chen, Yonatan Belinkov, Yu Hou, Yufang Hou, Yuntao Bai, Zachary Seid, Zhuoye Zhao, Zijian Wang, Zijie J. Wang, Zirui Wang, Ziyi Wu
ICCV 2023 Breaking Common Sense: WHOOPS! a Vision-and-Language Benchmark of Synthetic and Compositional Images Nitzan Bitton-Guetta, Yonatan Bitton, Jack Hessel, Ludwig Schmidt, Yuval Elovici, Gabriel Stanovsky, Roy Schwartz
NeurIPS 2023 Characterizing the Impacts of Semi-Supervised Learning for Weak Supervision Jeffrey Li, Jieyu Zhang, Ludwig Schmidt, Alexander J Ratner
CVPR 2023 CoWs on Pasture: Baselines and Benchmarks for Language-Driven Zero-Shot Object Navigation Samir Yitzhak Gadre, Mitchell Wortsman, Gabriel Ilharco, Ludwig Schmidt, Shuran Song
NeurIPSW 2023 Data Filtering Networks Alex Fang, Albin Madappally Jose, Amit Jain, Ludwig Schmidt, Alexander T Toshev, Vaishaal Shankar
NeurIPS 2023 DataComp: In Search of the Next Generation of Multimodal Datasets Samir Yitzhak Gadre, Gabriel Ilharco, Alex Fang, Jonathan Hayase, Georgios Smyrnis, Thao Nguyen, Ryan Marten, Mitchell Wortsman, Dhruba Ghosh, Jieyu Zhang, Eyal Orgad, Rahim Entezari, Giannis Daras, Sarah Pratt, Vivek Ramanujan, Yonatan Bitton, Kalyani Marathe, Stephen Mussmann, Richard Vencu, Mehdi Cherti, Ranjay Krishna, Pang Wei W Koh, Olga Saukh, Alexander J Ratner, Shuran Song, Hannaneh Hajishirzi, Ali Farhadi, Romain Beaumont, Sewoong Oh, Alex Dimakis, Jenia Jitsev, Yair Carmon, Vaishaal Shankar, Ludwig Schmidt
NeurIPS 2023 Does Progress on ImageNet Transfer to Real-World Datasets? Alex Fang, Simon Kornblith, Ludwig Schmidt
ICLR 2023 Editing Models with Task Arithmetic Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Hajishirzi, Ali Farhadi
NeurIPS 2023 Effective Robustness Against Natural Distribution Shifts for Models with Different Training Data Zhouxing Shi, Nicholas Carlini, Ananth Balashankar, Ludwig Schmidt, Cho-Jui Hsieh, Alex Beutel, Yao Qin
NeurIPS 2023 GenEval: An Object-Focused Framework for Evaluating Text-to-Image Alignment Dhruba Ghosh, Hannaneh Hajishirzi, Ludwig Schmidt
CHIL 2023 Homekit2020: A Benchmark for Time Series Classification on a Large Mobile Sensing Dataset with Laboratory Tested Ground Truth of Influenza Infections Mike A Merrill, Esteban Safranchik, Arinbjörn Kolbeinsson, Piyusha Gade, Ernesto Ramirez, Ludwig Schmidt, Luca Foschini, Tim Althoff
NeurIPS 2023 Improving Multimodal Datasets with Image Captioning Thao Nguyen, Samir Yitzhak Gadre, Gabriel Ilharco, Sewoong Oh, Ludwig Schmidt
TMLR 2023 Lo-Fi: Distributed Fine-Tuning Without Communication Mitchell Wortsman, Suchin Gururangan, Shen Li, Ali Farhadi, Ludwig Schmidt, Michael Rabbat, Ari S. Morcos
NeurIPS 2023 Multimodal C4: An Open, Billion-Scale Corpus of Images Interleaved with Text Wanrong Zhu, Jack Hessel, Anas Awadalla, Samir Yitzhak Gadre, Jesse Dodge, Alex Fang, Youngjae Yu, Ludwig Schmidt, William Yang Wang, Yejin Choi
NeurIPS 2023 Neural Priming for Sample-Efficient Adaptation Matthew Wallingford, Vivek Ramanujan, Alex Fang, Aditya Kusupati, Roozbeh Mottaghi, Aniruddha Kembhavi, Ludwig Schmidt, Ali Farhadi
NeurIPS 2023 Objaverse-XL: A Universe of 10m+ 3D Objects Matt Deitke, Ruoshi Liu, Matthew Wallingford, Huong Ngo, Oscar Michel, Aditya Kusupati, Alan Fan, Christian Laforte, Vikram Voleti, Samir Yitzhak Gadre, Eli VanderBilt, Aniruddha Kembhavi, Carl Vondrick, Georgia Gkioxari, Kiana Ehsani, Ludwig Schmidt, Ali Farhadi
CVPR 2023 Objaverse: A Universe of Annotated 3D Objects Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli VanderBilt, Ludwig Schmidt, Kiana Ehsani, Aniruddha Kembhavi, Ali Farhadi
NeurIPS 2023 On the Connection Between Pre-Training Data Diversity and Fine-Tuning Robustness Vivek Ramanujan, Thao Nguyen, Sewoong Oh, Ali Farhadi, Ludwig Schmidt
CVPR 2023 Reproducible Scaling Laws for Contrastive Language-Image Learning Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade Gordon, Christoph Schuhmann, Ludwig Schmidt, Jenia Jitsev
NeurIPS 2023 Stable and Low-Precision Training for Large-Scale Vision-Language Models Mitchell Wortsman, Tim Dettmers, Luke Zettlemoyer, Ari Morcos, Ali Farhadi, Ludwig Schmidt
ICLRW 2023 The Role of Pre-Training Data in Transfer Learning Rahim Entezari, Mitchell Wortsman, Olga Saukh, M. Moein Shariatnia, Hanie Sedghi, Ludwig Schmidt
NeurIPS 2023 VisIT-Bench: A Dynamic Benchmark for Evaluating Instruction-Following Vision-and-Language Models Yonatan Bitton, Hritik Bansal, Jack Hessel, Rulin Shao, Wanrong Zhu, Anas Awadalla, Josh Gardner, Rohan Taori, Ludwig Schmidt
ICML 2022 Data Determines Distributional Robustness in Contrastive Language Image Pre-Training (CLIP) Alex Fang, Gabriel Ilharco, Mitchell Wortsman, Yuhao Wan, Vaishaal Shankar, Achal Dave, Ludwig Schmidt
ICMLW 2022 How Well Do Contrastively Trained Models Transfer? M. Moein Shariatnia, Rahim Entezari, Mitchell Wortsman, Olga Saukh, Ludwig Schmidt
NeurIPS 2022 LAION-5B: An Open Large-Scale Dataset for Training Next Generation Image-Text Models Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, Patrick Schramowski, Srivatsa Kundurthy, Katherine Crowson, Ludwig Schmidt, Robert Kaczmarczyk, Jenia Jitsev
ICML 2022 Model Soups: Averaging Weights of Multiple Fine-Tuned Models Improves Accuracy Without Increasing Inference Time Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, Ludwig Schmidt
ICMLW 2022 On the Connection Between Pre-Training Data Diversity and Robustness Vivek Ramanujan, Thao Nguyen, Ludwig Schmidt, Ali Farhadi
NeurIPS 2022 Patching Open-Vocabulary Models by Interpolating Weights Gabriel Ilharco, Mitchell Wortsman, Samir Yitzhak Gadre, Shuran Song, Hannaneh Hajishirzi, Simon Kornblith, Ali Farhadi, Ludwig Schmidt
NeurIPS 2022 Quality Not Quantity: On the Interaction Between Dataset Design and Robustness of CLIP Thao Nguyen, Gabriel Ilharco, Mitchell Wortsman, Sewoong Oh, Ludwig Schmidt
CVPR 2022 Robust Fine-Tuning of Zero-Shot Models Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca Roelofs, Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong, Ludwig Schmidt
NeurIPS 2022 Subgroup Robustness Grows on Trees: An Empirical Baseline Investigation Josh Gardner, Zoran Popovic, Ludwig Schmidt
ICML 2021 Accuracy on the Line: On the Strong Correlation Between Out-of-Distribution and In-Distribution Generalization John P Miller, Rohan Taori, Aditi Raghunathan, Shiori Sagawa, Pang Wei Koh, Vaishaal Shankar, Percy Liang, Yair Carmon, Ludwig Schmidt
NeurIPS 2021 Characterizing Generalization Under Out-of-Distribution Shifts in Deep Metric Learning Timo Milbich, Karsten Roth, Samarth Sinha, Ludwig Schmidt, Marzyeh Ghassemi, Bjorn Ommer
ICCV 2021 Contrasting Contrastive Self-Supervised Representation Learning Pipelines Klemen Kotar, Gabriel Ilharco, Ludwig Schmidt, Kiana Ehsani, Roozbeh Mottaghi
ICCV 2021 Do Image Classifiers Generalize Across Time? Vaishaal Shankar, Achal Dave, Rebecca Roelofs, Deva Ramanan, Benjamin Recht, Ludwig Schmidt
NeurIPSW 2021 Do ImageNet Classifiers Generalize to ImageNet? Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, Vaishaal Shankar
NeurIPSW 2021 Evaluating Machine Accuracy on ImageNet Vaishaal Shankar, Rebecca Roelofs, Horia Mania, Alex Fang, Benjamin Recht, Ludwig Schmidt
NeurIPSW 2021 Measuring Robustness to Natural Distribution Shifts in Image Classification Rohan Taori, Achal Dave, Vaishaal Shankar, Nicholas Carlini, Benjamin Recht, Ludwig Schmidt
ICCV 2021 Predicting with Confidence on Unseen Distributions Devin Guillory, Vaishaal Shankar, Sayna Ebrahimi, Trevor Darrell, Ludwig Schmidt
NeurIPS 2021 Retiring Adult: New Datasets for Fair Machine Learning Frances Ding, Moritz Hardt, John P. Miller, Ludwig Schmidt
NeurIPSW 2021 Robust Fine-Tuning of Zero-Shot Models Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca Roelofs, Raphael Gontijo-Lopes, Hanna Hajishirzi, Ali Farhadi, Hongseok Namkoong, Ludwig Schmidt
ICML 2020 Evaluating Machine Accuracy on ImageNet Vaishaal Shankar, Rebecca Roelofs, Horia Mania, Alex Fang, Benjamin Recht, Ludwig Schmidt
NeurIPS 2020 Measuring Robustness to Natural Distribution Shifts in Image Classification Rohan Taori, Achal Dave, Vaishaal Shankar, Nicholas Carlini, Benjamin Recht, Ludwig Schmidt
ICML 2020 Neural Kernels Without Tangents Vaishaal Shankar, Alex Fang, Wenshuo Guo, Sara Fridovich-Keil, Jonathan Ragan-Kelley, Ludwig Schmidt, Benjamin Recht
ICML 2020 The Effect of Natural Distribution Shift on Question Answering Models John Miller, Karl Krauth, Benjamin Recht, Ludwig Schmidt
NeurIPS 2019 A Meta-Analysis of Overfitting in Machine Learning Rebecca Roelofs, Vaishaal Shankar, Benjamin Recht, Sara Fridovich-Keil, Moritz Hardt, John Miller, Ludwig Schmidt
ICMLW 2019 A Systematic Framework for Natural Perturbations from Videos Vaishaal Shankar, Achal Dave, Rebecca Roelofs, Deva Ramanan, Benjamin Recht, Ludwig Schmidt
ICML 2019 Do ImageNet Classifiers Generalize to ImageNet? Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, Vaishaal Shankar
ICML 2019 Exploring the Landscape of Spatial Robustness Logan Engstrom, Brandon Tran, Dimitris Tsipras, Ludwig Schmidt, Aleksander Madry
NeurIPS 2019 Model Similarity Mitigates Test Set Overuse Horia Mania, John Miller, Ludwig Schmidt, Moritz Hardt, Benjamin Recht
NeurIPS 2019 Unlabeled Data Improves Adversarial Robustness Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, John C. Duchi, Percy Liang
ICML 2018 A Classification-Based Study of Covariate Shift in GAN Distributions Shibani Santurkar, Ludwig Schmidt, Aleksander Madry
AISTATS 2018 A Fast Algorithm for Separated Sparsity via Perturbed Lagrangians Aleksander Madry, Slobodan Mitrovic, Ludwig Schmidt
NeurIPS 2018 Adversarially Robust Generalization Requires More Data Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, Aleksander Madry
COLT 2018 Fast and Sample Near-Optimal Algorithms for Learning Multidimensional Histograms Ilias Diakonikolas, Jerry Li, Ludwig Schmidt
ICML 2018 On the Limitations of First-Order Approximation in GAN Dynamics Jerry Li, Aleksander Madry, John Peebles, Ludwig Schmidt
ICLR 2018 Towards Deep Learning Models Resistant to Adversarial Attacks Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, Adrian Vladu
NeurIPS 2017 Communication-Efficient Distributed Learning of Discrete Distributions Ilias Diakonikolas, Elena Grigorescu, Jerry Li, Abhiram Natarajan, Krzysztof Onak, Ludwig Schmidt
NeurIPS 2017 On the Fine-Grained Complexity of Empirical Risk Minimization: Kernel Methods and Neural Networks Arturs Backurs, Piotr Indyk, Ludwig Schmidt
COLT 2017 Robust and Proper Learning for Mixtures of Gaussians via Systems of Polynomial Inequalities Jerry Li, Ludwig Schmidt
IJCAI 2016 A Nearly-Linear Time Framework for Graph-Structured Sparsity Chinmay Hegde, Piotr Indyk, Ludwig Schmidt
ICML 2016 Fast Algorithms for Segmented Regression Jayadev Acharya, Ilias Diakonikolas, Jerry Li, Ludwig Schmidt
NeurIPS 2016 Fast Recovery from a Union of Subspaces Chinmay Hegde, Piotr Indyk, Ludwig Schmidt
ICML 2015 A Nearly-Linear Time Framework for Graph-Structured Sparsity Chinmay Hegde, Piotr Indyk, Ludwig Schmidt
NeurIPS 2015 Differentially Private Learning of Structured Discrete Distributions Ilias Diakonikolas, Moritz Hardt, Ludwig Schmidt
NeurIPS 2015 Practical and Optimal LSH for Angular Distance Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, Ludwig Schmidt