ML Anthology
Authors
Search
About
Schoenholz, Samuel
9 publications
ICML
2020
Disentangling Trainability and Generalization in Deep Neural Networks
Lechao Xiao
,
Jeffrey Pennington
,
Samuel Schoenholz
NeurIPS
2020
Finite Versus Infinite Neural Networks: An Empirical Study
Jaehoon Lee
,
Samuel Schoenholz
,
Jeffrey Pennington
,
Ben Adlam
,
Lechao Xiao
,
Roman Novak
,
Jascha Sohl-Dickstein
NeurIPS
2020
JAX MD: A Framework for Differentiable Physics
Samuel Schoenholz
,
Ekin Dogus Cubuk
NeurIPS
2019
MetaInit: Initializing Learning by Learning to Initialize
Yann N. Dauphin
,
Samuel Schoenholz
NeurIPS
2019
Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent
Jaehoon Lee
,
Lechao Xiao
,
Samuel Schoenholz
,
Yasaman Bahri
,
Roman Novak
,
Jascha Sohl-Dickstein
,
Jeffrey Pennington
ICML
2018
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-Layer Vanilla Convolutional Neural Networks
Lechao Xiao
,
Yasaman Bahri
,
Jascha Sohl-Dickstein
,
Samuel Schoenholz
,
Jeffrey Pennington
ICML
2018
Dynamical Isometry and a Mean Field Theory of RNNs: Gating Enables Signal Propagation in Recurrent Neural Networks
Minmin Chen
,
Jeffrey Pennington
,
Samuel Schoenholz
NeurIPS
2017
Mean Field Residual Networks: On the Edge of Chaos
Ge Yang
,
Samuel Schoenholz
NeurIPS
2017
Resurrecting the Sigmoid in Deep Learning Through Dynamical Isometry: Theory and Practice
Jeffrey Pennington
,
Samuel Schoenholz
,
Surya Ganguli