ML Anthology
Authors
Search
About
Schoenholz, Samuel S.
12 publications
ICML
2022
Deep Equilibrium Networks Are Sensitive to Initialization Statistics
Atish Agarwala
,
Samuel S Schoenholz
ICML
2022
Fast Finite Width Neural Tangent Kernel
Roman Novak
,
Jascha Sohl-Dickstein
,
Samuel S Schoenholz
ICML
2021
Learn2Hop: Learned Optimization on Rough Landscapes
Amil Merchant
,
Luke Metz
,
Samuel S Schoenholz
,
Ekin D Cubuk
ICML
2021
Tilting the Playing Field: Dynamical Loss Functions for Machine Learning
Miguel Ruiz-Garcia
,
Ge Zhang
,
Samuel S Schoenholz
,
Andrea J. Liu
ICML
2021
Whitening and Second Order Optimization Both Make Information in the Dataset Unusable During Training, and Can Reduce or Prevent Generalization
Neha Wadia
,
Daniel Duckworth
,
Samuel S Schoenholz
,
Ethan Dyer
,
Jascha Sohl-Dickstein
ICLR
2020
Neural Tangents: Fast and Easy Infinite Neural Networks in Python
Roman Novak
,
Lechao Xiao
,
Jiri Hron
,
Jaehoon Lee
,
Alexander A. Alemi
,
Jascha Sohl-Dickstein
,
Samuel S. Schoenholz
ICLR
2019
A Mean Field Theory of Batch Normalization
Greg Yang
,
Jeffrey Pennington
,
Vinay Rao
,
Jascha Sohl-Dickstein
,
Samuel S. Schoenholz
ICLR
2018
Deep Neural Networks as Gaussian Processes
Jaehoon Lee
,
Yasaman Bahri
,
Roman Novak
,
Samuel S. Schoenholz
,
Jeffrey Pennington
,
Jascha Sohl-Dickstein
AISTATS
2018
The Emergence of Spectral Universality in Deep Networks
Jeffrey Pennington
,
Samuel S. Schoenholz
,
Surya Ganguli
ICLR
2017
Deep Information Propagation
Samuel S. Schoenholz
,
Justin Gilmer
,
Surya Ganguli
,
Jascha Sohl-Dickstein
ICLR
2017
Explaining the Learning Dynamics of Direct Feedback Alignment
Justin Gilmer
,
Colin Raffel
,
Samuel S. Schoenholz
,
Maithra Raghu
,
Jascha Sohl-Dickstein
ICML
2017
Neural Message Passing for Quantum Chemistry
Justin Gilmer
,
Samuel S. Schoenholz
,
Patrick F. Riley
,
Oriol Vinyals
,
George E. Dahl