Sebban, Marc

45 publications

ICML 2025 A Bregman Proximal Viewpoint on Neural Operators Abdel-Rahim Mezidi, Jordan Patracone, Saverio Salzo, Amaury Habrard, Massimiliano Pontil, Rémi Emonet, Marc Sebban
ECML-PKDD 2025 Provably Accurate Adaptive Sampling for Collocation Points in Physics-Informed Neural Networks Antoine Caradot, Rémi Emonet, Amaury Habrard, Abdel-Rahim Mezidi, Marc Sebban
ECML-PKDD 2024 Approximation Error of Sobolev Regular Functions with Tanh Neural Networks: Theoretical Impact on PINNs Benjamin Girault, Rémi Emonet, Amaury Habrard, Jordan Patracone, Marc Sebban
ECML-PKDD 2023 Is My Neural Net Driven by the MDL Principle? Eduardo Brandao, Stefan Duffner, Rémi Emonet, Amaury Habrard, François Jacquenet, Marc Sebban
AAAI 2022 Optimal Tensor Transport Tanguy Kerdoncuff, Rémi Emonet, Michaël Perrot, Marc Sebban
MLJ 2021 Sampled Gromov Wasserstein Tanguy Kerdoncuff, Rémi Emonet, Marc Sebban
ICML 2020 A Swiss Army Knife for Minimax Optimal Transport Sofien Dhouib, Ievgen Redko, Tanguy Kerdoncuff, Rémi Emonet, Marc Sebban
ECML-PKDD 2020 Graph Diffusion Wasserstein Distances Amélie Barbe, Marc Sebban, Paulo Gonçalves, Pierre Borgnat, Rémi Gribonval
ECML-PKDD 2020 Landmark-Based Ensemble Learning with Random Fourier Features and Gradient Boosting Léo Gautheron, Pascal Germain, Amaury Habrard, Guillaume Metzler, Emilie Morvant, Marc Sebban, Valentina Zantedeschi
IJCAI 2020 Learning from Few Positives: A Provably Accurate Metric Learning Algorithm to Deal with Imbalanced Data Rémi Viola, Rémi Emonet, Amaury Habrard, Guillaume Metzler, Marc Sebban
IJCAI 2020 Metric Learning in Optimal Transport for Domain Adaptation Tanguy Kerdoncuff, Rémi Emonet, Marc Sebban
IJCAI 2019 Differentially Private Optimal Transport: Application to Domain Adaptation Nam Lê Tien, Amaury Habrard, Marc Sebban
AISTATS 2019 From Cost-Sensitive Classification to Tight F-Measure Bounds Kevin Bascol, Rémi Emonet, Elisa Fromont, Amaury Habrard, Guillaume Metzler, Marc Sebban
MLJ 2019 On the Analysis of Adaptability in Multi-Source Domain Adaptation Ievgen Redko, Amaury Habrard, Marc Sebban
ECML-PKDD 2018 Fast and Provably Effective Multi-View Classification with Landmark-Based SVM Valentina Zantedeschi, Rémi Emonet, Marc Sebban
ECML-PKDD 2017 Efficient Top Rank Optimization with Gradient Boosting for Supervised Anomaly Detection Jordan Fréry, Amaury Habrard, Marc Sebban, Olivier Caelen, Liyun He-Guelton
ECML-PKDD 2017 Theoretical Analysis of Domain Adaptation with Optimal Transport Ievgen Redko, Amaury Habrard, Marc Sebban
NeurIPS 2016 Beta-Risk: A New Surrogate Risk for Learning from Weakly Labeled Data Valentina Zantedeschi, Rémi Emonet, Marc Sebban
CVPR 2016 Metric Learning as Convex Combinations of Local Models with Generalization Guarantees Valentina Zantedeschi, Remi Emonet, Marc Sebban
ICLR 2015 Algorithmic Robustness for Semi-Supervised (ε, Γ, Τ)-Good Metric Learning Maria-Irina Nicolae, Marc Sebban, Amaury Habrard, Éric Gaussier, Massih-Reza Amini
ECML-PKDD 2015 Joint Semi-Supervised Similarity Learning for Linear Classification Maria-Irina Nicolae, Éric Gaussier, Amaury Habrard, Marc Sebban
CVPR 2015 Landmarks-Based Kernelized Subspace Alignment for Unsupervised Domain Adaptation Rahaf Aljundi, Remi Emonet, Damien Muselet, Marc Sebban
MLJ 2014 Learning a Priori Constrained Weighted Majority Votes Aurélien Bellet, Amaury Habrard, Emilie Morvant, Marc Sebban
ECCV 2014 Modeling Perceptual Color Differences by Local Metric Learning Michaël Perrot, Amaury Habrard, Damien Muselet, Marc Sebban
ECML-PKDD 2013 Boosting for Unsupervised Domain Adaptation Amaury Habrard, Jean-Philippe Peyrache, Marc Sebban
ICCV 2013 Unsupervised Visual Domain Adaptation Using Subspace Alignment Basura Fernando, Amaury Habrard, Marc Sebban, Tinne Tuytelaars
CVPR 2012 Discriminative Feature Fusion for Image Classification Basura Fernando, Élisa Fromont, Damien Muselet, Marc Sebban
MLJ 2012 Good Edit Similarity Learning by Loss Minimization Aurélien Bellet, Amaury Habrard, Marc Sebban
ICML 2012 Similarity Learning for Provably Accurate Sparse Linear Classification Aurélien Bellet, Amaury Habrard, Marc Sebban
ECML-PKDD 2011 Learning Good Edit Similarities with Generalization Guarantees Aurélien Bellet, Amaury Habrard, Marc Sebban
ECML-PKDD 2010 Weighted Symbols-Based Edit Distance for String-Structured Image Classification Cécile Barat, Christophe Ducottet, Élisa Fromont, Anne-Claire Legrand, Marc Sebban
ECML-PKDD 2009 Discovering Patterns in Flows: A Privacy Preserving Approach with the ACSM Prototype Stéphanie Jacquemont, François Jacquenet, Marc Sebban
MLJ 2009 Mining Probabilistic Automata: A Statistical View of Sequential Pattern Mining Stéphanie Jacquemont, François Jacquenet, Marc Sebban
ECML-PKDD 2008 SEDiL: Software for Edit Distance Learning Laurent Boyer, Yann Esposito, Amaury Habrard, José Oncina, Marc Sebban
ECML-PKDD 2006 Learning Stochastic Tree Edit Distance Marc Bernard, Amaury Habrard, Marc Sebban
ICML 2004 Boosting Grammatical Inference with Confidence Oracles Jean-Christophe Janodet, Richard Nock, Marc Sebban, Henri-Maxime Suchier
ECML-PKDD 2003 Improvement of the State Merging Rule on Noisy Data in Probabilistic Grammatical Inference Amaury Habrard, Marc Bernard, Marc Sebban
ECML-PKDD 2003 On Boosting Improvement: Error Reduction and Convergence Speed-up Marc Sebban, Henri-Maxime Suchier
ICML 2003 On State Merging in Grammatical Inference: A Statistical Approach for Dealing with Noisy Data Marc Sebban, Jean-Christophe Janodet
ECML-PKDD 2002 Boosting Density Function Estimators Franck Thollard, Marc Sebban, Philippe Ézéquel
JMLR 2002 Stopping Criterion for Boosting-Based Data Reduction Techniques: From Binary to Multiclass Problem Marc Sebban, Richard Nock, Stéphane Lallich
ICML 2001 Boosting Neighborhood-Based Classifiers Marc Sebban, Richard Nock, Stéphane Lallich
UAI 2000 Combining Feature and Example Pruning by Uncertainty Minimization Marc Sebban, Richard Nock
ICML 2000 Instance Pruning as an Information Preserving Problem Marc Sebban, Richard Nock
ALT 2000 Sharper Bounds for the Hardness of Prototype and Feature Selection Richard Nock, Marc Sebban