ML Anthology
Authors
Search
About
Seeger, Matthias
25 publications
ICML
2024
Explaining Probabilistic Models with Distributional Values
Luca Franceschi
,
Michele Donini
,
Cedric Archambeau
,
Matthias Seeger
MLOSS
2024
Fortuna: A Library for Uncertainty Quantification in Deep Learning
Gianluca Detommaso
,
Alberto Gasparin
,
Michele Donini
,
Matthias Seeger
,
Andrew Gordon Wilson
,
Cedric Archambeau
ICLRW
2023
Explaining Multiclass Classifiers with Categorical Values: A Case Study in Radiography
Luca Franceschi
,
Cemre Zor
,
Muhammad Bilal Zafar
,
Gianluca Detommaso
,
Cedric Archambeau
,
Tamas Madl
,
Michele Donini
,
Matthias Seeger
ICML
2023
Optimizing Hyperparameters with Conformal Quantile Regression
David Salinas
,
Jacek Golebiowski
,
Aaron Klein
,
Matthias Seeger
,
Cedric Archambeau
AutoML
2022
Automatic Termination for Hyperparameter Optimization
Anastasia Makarova
,
Huibin Shen
,
Valerio Perrone
,
Aaron Klein
,
Jean Baptiste Faddoul
,
Andreas Krause
,
Matthias Seeger
,
Cedric Archambeau
AutoML
2022
Syne Tune: A Library for Large Scale Hyperparameter Tuning and Reproducible Research
David Salinas
,
Matthias Seeger
,
Aaron Klein
,
Valerio Perrone
,
Martin Wistuba
,
Cedric Archambeau
UAI
2021
A Nonmyopic Approach to Cost-Constrained Bayesian Optimization
Eric Hans Lee
,
David Eriksson
,
Valerio Perrone
,
Matthias Seeger
ICML
2020
LEEP: A New Measure to Evaluate Transferability of Learned Representations
Cuong Nguyen
,
Tal Hassner
,
Matthias Seeger
,
Cedric Archambeau
ICML
2017
Bayesian Optimization with Tree-Structured Dependencies
Rodolphe Jenatton
,
Cedric Archambeau
,
Javier González
,
Matthias Seeger
ICML
2013
Fast Dual Variational Inference for Non-Conjugate Latent Gaussian Models
Mohammad Emtiyaz Khan
,
Aleksandr Aravkin
,
Michael Friedlander
,
Matthias Seeger
AISTATS
2012
Fast Variational Bayesian Inference for Non-Conjugate Matrix Factorization Models
Matthias Seeger
,
Guillaume Bouchard
AISTATS
2011
Fast Convergent Algorithms for Expectation Propagation Approximate Bayesian Inference
Matthias Seeger
,
Hannes Nickisch
NeurIPS
2009
Speeding up Magnetic Resonance Image Acquisition by Bayesian Multi-Slice Adaptive Compressed Sensing
Matthias Seeger
NeurIPS
2008
Bayesian Experimental Design of Magnetic Resonance Imaging Sequences
Hannes Nickisch
,
Rolf Pohmann
,
Bernhard Schölkopf
,
Matthias Seeger
NeurIPS
2008
Local Gaussian Process Regression for Real Time Online Model Learning
Duy Nguyen-tuong
,
Jan R. Peters
,
Matthias Seeger
AISTATS
2007
Bayesian Inference and Optimal Design in the Sparse Linear Model
Matthias Seeger
,
Florian Steinke
,
Koji Tsuda
NeurIPS
2007
Bayesian Inference for Spiking Neuron Models with a Sparsity Prior
Sebastian Gerwinn
,
Matthias Bethge
,
Jakob H. Macke
,
Matthias Seeger
NeurIPS
2006
Cross-Validation Optimization for Large Scale Hierarchical Classification Kernel Methods
Matthias Seeger
NeurIPS
2005
Fast Gaussian Process Regression Using KD-Trees
Yirong Shen
,
Matthias Seeger
,
Andrew Y. Ng
AISTATS
2005
Semiparametric Latent Factor Models
Yee Whye Teh
,
Matthias Seeger
,
Michael I. Jordan
NeurIPS
2002
Fast Sparse Gaussian Process Methods: The Informative Vector Machine
Neil D. Lawrence
,
Matthias Seeger
,
Ralf Herbrich
JMLR
2002
PAC-Bayesian Generalisation Error Bounds for Gaussian Process Classification (Kernel Machines Section)
Matthias Seeger
NeurIPS
2001
Covariance Kernels from Bayesian Generative Models
Matthias Seeger
NeurIPS
2000
Using the Nyström Method to Speed up Kernel Machines
Christopher K. I. Williams
,
Matthias Seeger
NeurIPS
1999
Bayesian Model Selection for Support Vector Machines, Gaussian Processes and Other Kernel Classifiers
Matthias Seeger