ML Anthology
Authors
Search
About
Sejdinovic, Dino
54 publications
AAAI
2025
Bayesian Low-Rank Learning (Bella): A Practical Approach to Bayesian Neural Networks
Bao Gia Doan
,
Afshar Shamsi
,
Xiao-Yu Guo
,
Arash Mohammadi
,
Hamid Alinejad-Rokny
,
Dino Sejdinovic
,
Damien Teney
,
Damith C. Ranasinghe
,
Ehsan Abbasnejad
AISTATS
2025
Credal Two-Sample Tests of Epistemic Uncertainty
Siu Lun Chau
,
Antonin Schrab
,
Arthur Gretton
,
Dino Sejdinovic
,
Krikamol Muandet
UAI
2025
Label Distribution Learning Using the Squared Neural Family on the Probability Simplex
Daokun Zhang
,
Russell Tsuchida
,
Dino Sejdinovic
NeurIPS
2025
Squared Families Are Useful Conjugate Priors
Russell Tsuchida
,
Jiawei Liu
,
Cheng Soon Ong
,
Dino Sejdinovic
JMLR
2024
A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment
Robert Hu
,
Dino Sejdinovic
,
Robin J. Evans
NeurIPS
2024
Bayesian Adaptive Calibration and Optimal Design
Rafael Oliveira
,
Dino Sejdinovic
,
David Howard
,
Edwin V. Bonilla
TMLR
2024
Doubly Robust Kernel Statistics for Testing Distributional Treatment Effects
Jake Fawkes
,
Robert Hu
,
Robin J. Evans
,
Dino Sejdinovic
AAAI
2024
Exact, Fast and Expressive Poisson Point Processes via Squared Neural Families
Russell Tsuchida
,
Cheng Soon Ong
,
Dino Sejdinovic
ICML
2024
Neural-Kernel Conditional Mean Embeddings
Eiki Shimizu
,
Kenji Fukumizu
,
Dino Sejdinovic
NeurIPS
2023
A Rigorous Link Between Deep Ensembles and (Variational) Bayesian Methods
Veit David Wild
,
Sahra Ghalebikesabi
,
Dino Sejdinovic
,
Jeremias Knoblauch
NeurIPS
2023
Explaining the Uncertain: Stochastic Shapley Values for Gaussian Process Models
Siu Lun Chau
,
Krikamol Muandet
,
Dino Sejdinovic
TMLR
2023
Fair Kernel Regression Through Cross-Covariance Operators
Adrian Perez-Suay
,
Paula Gordaliza
,
Jean-Michel Loubes
,
Dino Sejdinovic
,
Gustau Camps-Valls
ICML
2023
Returning the Favour: When Regression Benefits from Probabilistic Causal Knowledge
Shahine Bouabid
,
Jake Fawkes
,
Dino Sejdinovic
NeurIPS
2023
Squared Neural Families: A New Class of Tractable Density Models
Russell Tsuchida
,
Cheng Soon Ong
,
Dino Sejdinovic
AISTATS
2022
Learning Inconsistent Preferences with Gaussian Processes
Siu Lun Chau
,
Javier Gonzalez
,
Dino Sejdinovic
AISTATS
2022
Survival Regression with Proper Scoring Rules and Monotonic Neural Networks
David Rindt
,
Robert Hu
,
David Steinsaltz
,
Dino Sejdinovic
NeurIPS
2022
Explaining Preferences with Shapley Values
Robert Hu
,
Siu Lun Chau
,
Jaime Ferrando Huertas
,
Dino Sejdinovic
NeurIPS
2022
Generalized Variational Inference in Function Spaces: Gaussian Measures Meet Bayesian Deep Learning
Veit David Wild
,
Robert Hu
,
Dino Sejdinovic
NeurIPS
2022
Giga-Scale Kernel Matrix-Vector Multiplication on GPU
Robert Hu
,
Siu Lun Chau
,
Dino Sejdinovic
,
Joan Glaunès
MLJ
2022
Large Scale Tensor Regression Using Kernels and Variational Inference
Robert Hu
,
Geoff K. Nicholls
,
Dino Sejdinovic
NeurIPS
2022
RKHS-SHAP: Shapley Values for Kernel Methods
Siu Lun Chau
,
Robert Hu
,
Javier González
,
Dino Sejdinovic
CLeaR
2022
Selection, Ignorability and Challenges with Causal Fairness
Jake Fawkes
,
Robin Evans
,
Dino Sejdinovic
ECML-PKDD
2022
Spectral Ranking with Covariates
Siu Lun Chau
,
Mihai Cucuringu
,
Dino Sejdinovic
AISTATS
2021
Noise Contrastive Meta-Learning for Conditional Density Estimation Using Kernel Mean Embeddings
Jean-Francois Ton
,
Lucian Chan
,
Yee Whye Teh
,
Dino Sejdinovic
NeurIPS
2021
BayesIMP: Uncertainty Quantification for Causal Data Fusion
Siu Lun Chau
,
Jean-Francois Ton
,
Javier González
,
Yee W. Teh
,
Dino Sejdinovic
NeurIPS
2021
Deconditional Downscaling with Gaussian Processes
Siu Lun Chau
,
Shahine Bouabid
,
Dino Sejdinovic
AAAI
2021
Meta Learning for Causal Direction
Jean-François Ton
,
Dino Sejdinovic
,
Kenji Fukumizu
JMLR
2021
Towards a Unified Analysis of Random Fourier Features
Zhu Li
,
Jean-Francois Ton
,
Dino Oglic
,
Dino Sejdinovic
UAI
2021
Variational Inference with Continuously-Indexed Normalizing Flows
Anthony Caterini
,
Rob Cornish
,
Dino Sejdinovic
,
Arnaud Doucet
ICML
2020
Inter-Domain Deep Gaussian Processes
Tim G. J. Rudner
,
Dino Sejdinovic
,
Yarin Gal
ECML-PKDD
2019
A Differentially Private Kernel Two-Sample Test
Anant Raj
,
Ho Chung Leon Law
,
Dino Sejdinovic
,
Mijung Park
NeurIPS
2019
Hyperparameter Learning via Distributional Transfer
Ho Chung Law
,
Peilin Zhao
,
Leung Sing Chan
,
Junzhou Huang
,
Dino Sejdinovic
ICML
2019
Towards a Unified Analysis of Random Fourier Features
Zhu Li
,
Jean-Francois Ton
,
Dino Oglic
,
Dino Sejdinovic
AISTATS
2018
Bayesian Approaches to Distribution Regression
Ho Chung Leon Law
,
Danica J. Sutherland
,
Dino Sejdinovic
,
Seth R. Flaxman
NeurIPS
2018
Causal Inference via Kernel Deviance Measures
Jovana Mitrovic
,
Dino Sejdinovic
,
Yee Whye Teh
NeurIPS
2018
Hamiltonian Variational Auto-Encoder
Anthony L Caterini
,
Arnaud Doucet
,
Dino Sejdinovic
NeurIPS
2018
Variational Learning on Aggregate Outputs with Gaussian Processes
Ho Chung Law
,
Dino Sejdinovic
,
Ewan Cameron
,
Tim Lucas
,
Seth Flaxman
,
Katherine Battle
,
Kenji Fukumizu
ICLR
2017
Deep Kernel Machines via the Kernel Reparametrization Trick
Jovana Mitrovic
,
Dino Sejdinovic
,
Yee Whye Teh
UAI
2017
Feature-to-Feature Regression for a Two-Step Conditional Independence Test
Qinyi Zhang
,
Sarah Filippi
,
Seth R. Flaxman
,
Dino Sejdinovic
ECML-PKDD
2017
Kernel Sequential Monte Carlo
Ingmar Schuster
,
Heiko Strathmann
,
Brooks Paige
,
Dino Sejdinovic
AISTATS
2017
Poisson Intensity Estimation with Reproducing Kernels
Seth R. Flaxman
,
Yee Whye Teh
,
Dino Sejdinovic
NeurIPS
2017
Testing and Learning on Distributions with Symmetric Noise Invariance
Ho Chung Law
,
Christopher Yau
,
Dino Sejdinovic
UAI
2016
Bayesian Learning of Kernel Embeddings
Seth R. Flaxman
,
Dino Sejdinovic
,
John P. Cunningham
,
Sarah Filippi
ICML
2016
DR-ABC: Approximate Bayesian Computation with Kernel-Based Distribution Regression
Jovana Mitrovic
,
Dino Sejdinovic
,
Yee-Whye Teh
AISTATS
2016
K2-ABC: Approximate Bayesian Computation with Kernel Embeddings
Mijung Park
,
Wittawat Jitkrittum
,
Dino Sejdinovic
UAI
2016
Super-Sampling with a Reservoir
Brooks Paige
,
Dino Sejdinovic
,
Frank D. Wood
NeurIPS
2015
Fast Two-Sample Testing with Analytic Representations of Probability Measures
Kacper P Chwialkowski
,
Aaditya Ramdas
,
Dino Sejdinovic
,
Arthur Gretton
NeurIPS
2015
Gradient-Free Hamiltonian Monte Carlo with Efficient Kernel Exponential Families
Heiko Strathmann
,
Dino Sejdinovic
,
Samuel Livingstone
,
Zoltan Szabo
,
Arthur Gretton
UAI
2015
Kernel-Based Just-in-Time Learning for Passing Expectation Propagation Messages
Wittawat Jitkrittum
,
Arthur Gretton
,
Nicolas Heess
,
S. M. Ali Eslami
,
Balaji Lakshminarayanan
,
Dino Sejdinovic
,
Zoltán Szabó
NeurIPS
2014
A Wild Bootstrap for Degenerate Kernel Tests
Kacper P Chwialkowski
,
Dino Sejdinovic
,
Arthur Gretton
ICML
2014
Kernel Adaptive Metropolis-Hastings
Dino Sejdinovic
,
Heiko Strathmann
,
Maria Lomeli Garcia
,
Christophe Andrieu
,
Arthur Gretton
NeurIPS
2013
A Kernel Test for Three-Variable Interactions
Dino Sejdinovic
,
Arthur Gretton
,
Wicher Bergsma
ICML
2012
Hypothesis Testing Using Pairwise Distances and Associated Kernels
Dino Sejdinovic
,
Arthur Gretton
,
Bharath K. Sriperumbudur
,
Kenji Fukumizu
NeurIPS
2012
Optimal Kernel Choice for Large-Scale Two-Sample Tests
Arthur Gretton
,
Dino Sejdinovic
,
Heiko Strathmann
,
Sivaraman Balakrishnan
,
Massimiliano Pontil
,
Kenji Fukumizu
,
Bharath K. Sriperumbudur