ML Anthology
Authors
Search
About
Sekhari, Ayush
40 publications
ICLR
2025
Computationally Efficient RL Under Linear Bellman Completeness for Deterministic Dynamics
Runzhe Wu
,
Ayush Sekhari
,
Akshay Krishnamurthy
,
Wen Sun
ICML
2025
GaussMark: A Practical Approach for Structural Watermarking of Language Models
Adam Block
,
Alexander Rakhlin
,
Ayush Sekhari
ICLR
2025
Machine Unlearning Fails to Remove Data Poisoning Attacks
Martin Pawelczyk
,
Jimmy Z. Di
,
Yiwei Lu
,
Gautam Kamath
,
Ayush Sekhari
,
Seth Neel
ICML
2025
System-Aware Unlearning Algorithms: Use Lesser, Forget Faster
Linda Lu
,
Ayush Sekhari
,
Karthik Sridharan
NeurIPS
2025
The Gaussian Mixing Mechanism: Renyi Differential Privacy via Gaussian Sketches
Omri Lev
,
Vishwak Srinivasan
,
Moshe Shenfeld
,
Katrina Ligett
,
Ayush Sekhari
,
Ashia C. Wilson
COLT
2025
The Role of Environment Access in Agnostic Reinforcement Learning (Extended Abstract)
Akshay Krishnamurthy
,
Gene Li
,
Ayush Sekhari
COLT
2025
The Space Complexity of Learning-Unlearning Algorithms (extended Abstract)
Yeshwanth Cherapanamjeri
,
Sumegba Garg
,
Nived Rajaraman
,
Ayush Sekhari
,
Abhishek Shetty
ICLRW
2025
Unstable Unlearning: The Hidden Risk of Concept Resurgence in Diffusion Models
Vinith Menon Suriyakumar
,
Rohan Alur
,
Ayush Sekhari
,
Manish Raghavan
,
Ashia C. Wilson
ICLR
2024
Harnessing Density Ratios for Online Reinforcement Learning
Philip Amortila
,
Dylan J Foster
,
Nan Jiang
,
Ayush Sekhari
,
Tengyang Xie
NeurIPSW
2024
Langevin Dynamics: A Unified Perspective on Optimization via Lyapunov Potentials
August Y Chen
,
Ayush Sekhari
,
Karthik Sridharan
ICLR
2024
Offline Data Enhanced On-Policy Policy Gradient with Provable Guarantees
Yifei Zhou
,
Ayush Sekhari
,
Yuda Song
,
Wen Sun
COLT
2024
Offline Reinforcement Learning: Role of State Aggregation and Trajectory Data
Zeyu Jia
,
Alexander Rakhlin
,
Ayush Sekhari
,
Chen-Yu Wei
ICML
2024
Random Latent Exploration for Deep Reinforcement Learning
Srinath V. Mahankali
,
Zhang-Wei Hong
,
Ayush Sekhari
,
Alexander Rakhlin
,
Pulkit Agrawal
ICML
2023
Computationally Efficient PAC RL in POMDPs with Latent Determinism and Conditional Embeddings
Masatoshi Uehara
,
Ayush Sekhari
,
Jason D. Lee
,
Nathan Kallus
,
Wen Sun
NeurIPS
2023
Contextual Bandits and Imitation Learning with Preference-Based Active Queries
Ayush Sekhari
,
Karthik Sridharan
,
Wen Sun
,
Runzhe Wu
ICMLW
2023
Contextual Bandits and Imitation Learning with Preference-Based Active Queries
Ayush Sekhari
,
Karthik Sridharan
,
Wen Sun
,
Runzhe Wu
ICMLW
2023
Contextual Bandits and Imitation Learning with Preference-Based Active Queries
Ayush Sekhari
,
Karthik Sridharan
,
Wen Sun
,
Runzhe Wu
NeurIPS
2023
Hidden Poison: Machine Unlearning Enables Camouflaged Poisoning Attacks
Jimmy Di
,
Jack Douglas
,
Jayadev Acharya
,
Gautam Kamath
,
Ayush Sekhari
ICLR
2023
Hybrid RL: Using Both Offline and Online Data Can Make RL Efficient
Yuda Song
,
Yifei Zhou
,
Ayush Sekhari
,
Drew Bagnell
,
Akshay Krishnamurthy
,
Wen Sun
NeurIPS
2023
Model-Free Reinforcement Learning with the Decision-Estimation Coefficient
Dylan J Foster
,
Noah Golowich
,
Jian Qian
,
Alexander Rakhlin
,
Ayush Sekhari
NeurIPS
2023
Selective Sampling and Imitation Learning via Online Regression
Ayush Sekhari
,
Karthik Sridharan
,
Wen Sun
,
Runzhe Wu
ICMLW
2023
Selective Sampling and Imitation Learning via Online Regression
Ayush Sekhari
,
Karthik Sridharan
,
Wen Sun
,
Runzhe Wu
COLT
2023
Ticketed Learning–Unlearning Schemes
Badih Ghazi
,
Pritish Kamath
,
Ravi Kumar
,
Pasin Manurangsi
,
Ayush Sekhari
,
Chiyuan Zhang
NeurIPS
2023
When Is Agnostic Reinforcement Learning Statistically Tractable?
Zeyu Jia
,
Gene Li
,
Alexander Rakhlin
,
Ayush Sekhari
,
Nati Srebro
ICMLW
2023
When Is Agnostic Reinforcement Learning Statistically Tractable?
Gene Li
,
Zeyu Jia
,
Alexander Rakhlin
,
Ayush Sekhari
,
Nathan Srebro
NeurIPS
2022
From Gradient Flow on Population Loss to Learning with Stochastic Gradient Descent
Christopher M De Sa
,
Satyen Kale
,
Jason Lee
,
Ayush Sekhari
,
Karthik Sridharan
ICML
2022
Guarantees for Epsilon-Greedy Reinforcement Learning with Function Approximation
Chris Dann
,
Yishay Mansour
,
Mehryar Mohri
,
Ayush Sekhari
,
Karthik Sridharan
NeurIPSW
2022
Hidden Poison: Machine Unlearning Enables Camouflaged Poisoning Attacks
Jimmy Z. Di
,
Jack Douglas
,
Jayadev Acharya
,
Gautam Kamath
,
Ayush Sekhari
NeurIPSW
2022
Hidden Poison: Machine Unlearning Enables Camouflaged Poisoning Attacks
Jimmy Z. Di
,
Jack Douglas
,
Jayadev Acharya
,
Gautam Kamath
,
Ayush Sekhari
NeurIPSW
2022
Hybrid RL: Using Both Offline and Online Data Can Make RL Efficient
Yuda Song
,
Yifei Zhou
,
Ayush Sekhari
,
Drew Bagnell
,
Akshay Krishnamurthy
,
Wen Sun
NeurIPS
2022
On the Complexity of Adversarial Decision Making
Dylan J Foster
,
Alexander Rakhlin
,
Ayush Sekhari
,
Karthik Sridharan
NeurIPS
2022
Provably Efficient Reinforcement Learning in Partially Observable Dynamical Systems
Masatoshi Uehara
,
Ayush Sekhari
,
Jason Lee
,
Nathan Kallus
,
Wen Sun
NeurIPS
2021
Agnostic Reinforcement Learning with Low-Rank MDPs and Rich Observations
Ayush Sekhari
,
Christoph Dann
,
Mehryar Mohri
,
Yishay Mansour
,
Karthik Sridharan
NeurIPS
2021
Neural Active Learning with Performance Guarantees
Zhilei Wang
,
Pranjal Awasthi
,
Christoph Dann
,
Ayush Sekhari
,
Claudio Gentile
NeurIPS
2021
Remember What You Want to Forget: Algorithms for Machine Unlearning
Ayush Sekhari
,
Jayadev Acharya
,
Gautam Kamath
,
Ananda Theertha Suresh
NeurIPS
2021
SGD: The Role of Implicit Regularization, Batch-Size and Multiple-Epochs
Ayush Sekhari
,
Karthik Sridharan
,
Satyen Kale
NeurIPS
2020
Reinforcement Learning with Feedback Graphs
Christoph Dann
,
Yishay Mansour
,
Mehryar Mohri
,
Ayush Sekhari
,
Karthik Sridharan
COLT
2020
Second-Order Information in Non-Convex Stochastic Optimization: Power and Limitations
Yossi Arjevani
,
Yair Carmon
,
John C. Duchi
,
Dylan J. Foster
,
Ayush Sekhari
,
Karthik Sridharan
COLT
2019
The Complexity of Making the Gradient Small in Stochastic Convex Optimization
Dylan J. Foster
,
Ayush Sekhari
,
Ohad Shamir
,
Nathan Srebro
,
Karthik Sridharan
,
Blake Woodworth
NeurIPS
2018
Uniform Convergence of Gradients for Non-Convex Learning and Optimization
Dylan J Foster
,
Ayush Sekhari
,
Karthik Sridharan