Senanayake, Ransalu

17 publications

ICML 2025 Explainable Concept Generation Through Vision-Language Preference Learning for Understanding Neural Networks’ Internal Representations Aditya Taparia, Som Sagar, Ransalu Senanayake
NeurIPS 2025 PAC Bench: Do Foundation Models Understand Prerequisites for Executing Manipulation Policies? Atharva Gundawar, Som Sagar, Ransalu Senanayake
NeurIPSW 2024 Explainable Concept Generation Through Vision-Language Preference Learning Aditya Taparia, Som Sagar, Ransalu Senanayake
NeurIPSW 2024 ExpressivityArena: Can LLMs Express Information Implicitly? Joshua Tint, Som Sagar, Aditya Taparia, Caleb Liu, Kelly Raines, Bimsara Pathiraja, Ransalu Senanayake
ICML 2024 Failures Are Fated, but Can Be Faded: Characterizing and Mitigating Unwanted Behaviors in Large-Scale Vision and Language Models Som Sagar, Aditya Taparia, Ransalu Senanayake
NeurIPSW 2024 LLM-Assisted Red Teaming of Diffusion Models Through "Failures Are Fated, but Can Be Faded" Som Sagar, Aditya Taparia, Ransalu Senanayake
MLJ 2023 Guest Editorial: Special Issue on Robust Machine Learning Ransalu Senanayake, Daniel J. Fremont, Mykel J. Kochenderfer, Alessio R. Lomuscio, Dragos D. Margineantu, Cheng Soon Ong
AAAI 2022 A Gray Box Model for Characterizing Driver Behavior Soyeon Jung, Ransalu Senanayake, Mykel J. Kochenderfer
NeurIPS 2021 Evidential SoftMax for Sparse Multimodal Distributions in Deep Generative Models Phil Chen, Mikhal Itkina, Ransalu Senanayake, Mykel J Kochenderfer
ICMLW 2021 Out of Distribution Detection and Adversarial Attacks on Deep Neural Networks for Robust Medical Image Analysis Anisie Uwimana, Ransalu Senanayake
NeurIPS 2020 Evidential Sparsification of Multimodal Latent Spaces in Conditional Variational Autoencoders Masha Itkina, Boris Ivanovic, Ransalu Senanayake, Mykel J Kochenderfer, Marco Pavone
AISTATS 2019 Black Box Quantiles for Kernel Learning Anthony Tompkins, Ransalu Senanayake, Philippe Morere, Fabio Ramos
CoRL 2018 Automorphing Kernels for Nonstationarity in Mapping Unstructured Environments Ransalu Senanayake, Anthony Tompkins, Fabio Ramos
AAAI 2018 Building Continuous Occupancy Maps with Moving Robots Ransalu Senanayake, Fabio Ramos
CoRL 2017 Bayesian Hilbert Maps for Dynamic Continuous Occupancy Mapping Ransalu Senanayake, Fabio Ramos
AAAI 2016 Predicting Spatio-Temporal Propagation of Seasonal Influenza Using Variational Gaussian Process Regression Ransalu Senanayake, Simon Timothy O'Callaghan, Fabio Ramos
NeurIPS 2016 Spatio-Temporal Hilbert Maps for Continuous Occupancy Representation in Dynamic Environments Ransalu Senanayake, Lionel Ott, Simon O'Callaghan, Fabio T Ramos