Shao, Han

15 publications

NeurIPS 2025 How Many Domains Suffice for Domain Generalization? a Tight Characterization via the Domain Shattering Dimension Cynthia Dwork, Lunjia Hu, Han Shao
NeurIPS 2025 Probably Approximately Precision and Recall Learning Lee Cohen, Yishay Mansour, Shay Moran, Han Shao
ICML 2025 Should Decision-Makers Reveal Classifiers in Online Strategic Classification? Han Shao, Shuo Xie, Kunhe Yang
COLT 2024 Learnability Gaps of Strategic Classification Lee Cohen, Yishay Mansour, Shay Moran, Han Shao
NeurIPS 2024 Transformation-Invariant Learning and Theoretical Guarantees for OOD Generalization Omar Montasser, Han Shao, Emmanuel Abbe
NeurIPS 2023 Eliciting User Preferences for Personalized Multi-Objective Decision Making Through Comparative Feedback Han Shao, Lee Cohen, Avrim Blum, Yishay Mansour, Aadirupa Saha, Matthew Walter
NeurIPS 2023 Strategic Classification Under Unknown Personalized Manipulation Han Shao, Avrim Blum, Omar Montasser
NeurIPS 2022 A Theory of PAC Learnability Under Transformation Invariances Han Shao, Omar Montasser, Avrim Blum
NeurIPS 2021 Accurately Solving Rod Dynamics with Graph Learning Han Shao, Tassilo Kugelstadt, Torsten Hädrich, Wojtek Palubicki, Jan Bender, Soeren Pirk, Dominik L Michels
ICML 2021 One for One, or All for All: Equilibria and Optimality of Collaboration in Federated Learning Avrim Blum, Nika Haghtalab, Richard Lanas Phillips, Han Shao
COLT 2021 Robust Learning Under Clean-Label Attack Avrim Blum, Steve Hanneke, Jian Qian, Han Shao
NeurIPS 2020 Online Learning with Primary and Secondary Losses Avrim Blum, Han Shao
ICML 2020 Structure Adaptive Algorithms for Stochastic Bandits Rémy Degenne, Han Shao, Wouter Koolen
NeurIPS 2018 Almost Optimal Algorithms for Linear Stochastic Bandits with Heavy-Tailed Payoffs Han Shao, Xiaotian Yu, Irwin King, Michael R Lyu
UAI 2018 Pure Exploration of Multi-Armed Bandits with Heavy-Tailed Payoffs Xiaotian Yu, Han Shao, Michael R. Lyu, Irwin King