ML Anthology
Authors
Search
About
Shen, Zebang
38 publications
MLJ
2025
Efficient Projection-Free Online Convex Optimization Using Stochastic Gradients
Jiahao Xie
,
Chao Zhang
,
Zebang Shen
,
Hui Qian
NeurIPS
2025
Flow Density Control: Generative Optimization Beyond Entropy-Regularized Fine-Tuning
Riccardo De Santi
,
Marin Vlastelica
,
Ya-Ping Hsieh
,
Zebang Shen
,
Niao He
,
Andreas Krause
ICLR
2025
Learning to Steer Markovian Agents Under Model Uncertainty
Jiawei Huang
,
Vinzenz Thoma
,
Zebang Shen
,
Heinrich H. Nax
,
Niao He
ICML
2025
Provable Maximum Entropy Manifold Exploration via Diffusion Models
Riccardo De Santi
,
Marin Vlastelica
,
Ya-Ping Hsieh
,
Zebang Shen
,
Niao He
,
Andreas Krause
ICLRW
2025
Provable Maximum Entropy Manifold Exploration via Diffusion Models
Riccardo De Santi
,
Marin Vlastelica
,
Ya-Ping Hsieh
,
Zebang Shen
,
Niao He
,
Andreas Krause
NeurIPS
2025
Scalable Neural Incentive Design with Parameterized Mean-Field Approximation
Nathan Corecco
,
Batuhan Yardim
,
Vinzenz Thoma
,
Zebang Shen
,
Niao He
ICMLW
2024
A Hessian-Aware Stochastic Differential Equation for Modelling SGD
Xiang Li
,
Zebang Shen
,
Liang Zhang
,
Niao He
ICMLW
2024
Learning to Steer Markovian Agents Under Model Uncertainty
Jiawei Huang
,
Vinzenz Thoma
,
Zebang Shen
,
Heinrich H. Nax
,
Niao He
NeurIPS
2024
Solving Zero-Sum Markov Games with Continuous State via Spectral Dynamic Embedding
Chenhao Zhou
,
Zebang Shen
,
Chao Zhang
,
Hanbin Zhao
,
Hui Qian
AAAI
2023
CDMA: A Practical Cross-Device Federated Learning Algorithm for General Minimax Problems
Jiahao Xie
,
Chao Zhang
,
Zebang Shen
,
Weijie Liu
,
Hui Qian
NeurIPS
2023
Entropy-Dissipation Informed Neural Network for McKean-Vlasov Type PDEs
Zebang Shen
,
Zhenfu Wang
ICLR
2023
Share Your Representation Only: Guaranteed Improvement of the Privacy-Utility Tradeoff in Federated Learning
Zebang Shen
,
Jiayuan Ye
,
Anmin Kang
,
Hamed Hassani
,
Reza Shokri
TMLR
2023
Straggler-Resilient Personalized Federated Learning
Isidoros Tziotis
,
Zebang Shen
,
Ramtin Pedarsani
,
Hamed Hassani
,
Aryan Mokhtari
AISTATS
2022
Federated Functional Gradient Boosting
Zebang Shen
,
Hamed Hassani
,
Satyen Kale
,
Amin Karbasi
ICLR
2022
An Agnostic Approach to Federated Learning with Class Imbalance
Zebang Shen
,
Juan Cervino
,
Hamed Hassani
,
Alejandro Ribeiro
AAAI
2022
From One to All: Learning to Match Heterogeneous and Partially Overlapped Graphs
Weijie Liu
,
Hui Qian
,
Chao Zhang
,
Jiahao Xie
,
Zebang Shen
,
Nenggan Zheng
COLT
2022
Self-Consistency of the Fokker Planck Equation
Zebang Shen
,
Zhenfu Wang
,
Satyen Kale
,
Alejandro Ribeiro
,
Amin Karbasi
,
Hamed Hassani
AAAI
2021
A Hybrid Stochastic Gradient Hamiltonian Monte Carlo Method
Chao Zhang
,
Zhijian Li
,
Zebang Shen
,
Jiahao Xie
,
Hui Qian
ICLR
2020
A Stochastic Trust Region Method for Non-Convex Minimization
Zebang Shen
,
Pan Zhou
,
Cong Fang
,
Alejandro Ribeiro
IJCAI
2020
Accelerating Stratified Sampling SGD by Reconstructing Strata
Weijie Liu
,
Hui Qian
,
Chao Zhang
,
Zebang Shen
,
Jiahao Xie
,
Nenggan Zheng
AAAI
2020
Aggregated Gradient Langevin Dynamics
Chao Zhang
,
Jiahao Xie
,
Zebang Shen
,
Peilin Zhao
,
Tengfei Zhou
,
Hui Qian
AAAI
2020
Efficient Projection-Free Online Methods with Stochastic Recursive Gradient
Jiahao Xie
,
Zebang Shen
,
Chao Zhang
,
Boyu Wang
,
Hui Qian
AISTATS
2020
One Sample Stochastic Frank-Wolfe
Mingrui Zhang
,
Zebang Shen
,
Aryan Mokhtari
,
Hamed Hassani
,
Amin Karbasi
NeurIPS
2020
Sinkhorn Barycenter via Functional Gradient Descent
Zebang Shen
,
Zhenfu Wang
,
Alejandro Ribeiro
,
Hamed Hassani
NeurIPS
2020
Sinkhorn Natural Gradient for Generative Models
Zebang Shen
,
Zhenfu Wang
,
Alejandro Ribeiro
,
Hamed Hassani
AISTATS
2019
Complexities in Projection-Free Stochastic Non-Convex Minimization
Zebang Shen
,
Cong Fang
,
Peilin Zhao
,
Junzhou Huang
,
Hui Qian
AISTATS
2019
Decentralized Gradient Tracking for Continuous DR-Submodular Maximization
Jiahao Xie
,
Chao Zhang
,
Zebang Shen
,
Chao Mi
,
Hui Qian
ICML
2019
Hessian Aided Policy Gradient
Zebang Shen
,
Alejandro Ribeiro
,
Hamed Hassani
,
Hui Qian
,
Chao Mi
AISTATS
2019
Multitask Metric Learning: Theory and Algorithm
Boyu Wang
,
Hejia Zhang
,
Peng Liu
,
Zebang Shen
,
Joelle Pineau
NeurIPS
2019
Stochastic Continuous Greedy ++: When Upper and Lower Bounds Match
Amin Karbasi
,
Hamed Hassani
,
Aryan Mokhtari
,
Zebang Shen
IJCAI
2018
JUMP: A Jointly Predictor for User Click and Dwell Time
Tengfei Zhou
,
Hui Qian
,
Zebang Shen
,
Chao Zhang
,
Chengwei Wang
,
Shichen Liu
,
Wenwu Ou
AISTATS
2018
Towards Memory-Friendly Deterministic Incremental Gradient Method
Jiahao Xie
,
Hui Qian
,
Zebang Shen
,
Chao Zhang
ICML
2018
Towards More Efficient Stochastic Decentralized Learning: Faster Convergence and Sparse Communication
Zebang Shen
,
Aryan Mokhtari
,
Tengfei Zhou
,
Peilin Zhao
,
Hui Qian
IJCAI
2017
Accelerated Doubly Stochastic Gradient Algorithm for Large-Scale Empirical Risk Minimization
Zebang Shen
,
Hui Qian
,
Tongzhou Mu
,
Chao Zhang
IJCAI
2017
Tensor Completion with Side Information: A Riemannian Manifold Approach
Tengfei Zhou
,
Hui Qian
,
Zebang Shen
,
Chao Zhang
,
Congfu Xu
IJCAI
2016
Adaptive Variance Reducing for Stochastic Gradient Descent
Zebang Shen
,
Hui Qian
,
Tengfei Zhou
,
Tongzhou Mu
AAAI
2016
Fast Hybrid Algorithm for Big Matrix Recovery
Tengfei Zhou
,
Hui Qian
,
Zebang Shen
,
Congfu Xu
IJCAI
2015
Simple Atom Selection Strategy for Greedy Matrix Completion
Zebang Shen
,
Hui Qian
,
Tengfei Zhou
,
Song Wang