Sheng, Victor S.

29 publications

AAAI 2025 CLEP: A Novel Contrastive Learning Method for Evolutionary Reentrancy Vulnerability Detection Jie Chen, Liangmin Wang, Huijuan Zhu, Victor S. Sheng
AAAI 2025 Fuzzy Collaborative Reasoning Huanhuan Yuan, Pengpeng Zhao, Jiaqing Fan, Junhua Fang, Guanfeng Liu, Victor S. Sheng
AAAI 2025 SLRL: Semi-Supervised Local Community Detection Based on Reinforcement Learning Li Ni, Rui Ye, Wenjian Luo, Yiwen Zhang, Lei Zhang, Victor S. Sheng
AAAI 2024 Bridging the Gap Between Source Code and Requirements Using GPT (Student Abstract) Ruoyu Xu, Zhenyu Xu, Gaoxiang Li, Victor S. Sheng
AAAI 2024 ChatGPT-Generated Code Assignment Detection Using Perplexity of Large Language Models (Student Abstract) Zhenyu Xu, Ruoyu Xu, Victor S. Sheng
MLJ 2024 Cost-Sensitive Sparse Group Online Learning for Imbalanced Data Streams Zhong Chen, Victor S. Sheng, Andrea Edwards, Kun Zhang
AAAI 2024 DDViT: Double-Level Fusion Domain Adapter Vision Transformer (Student Abstract) Linpeng Sun, Victor S. Sheng
AAAI 2024 Detecting AI-Generated Code Assignments Using Perplexity of Large Language Models Zhenyu Xu, Victor S. Sheng
AAAI 2024 Enhancing Transcription Factor Prediction Through Multi-Task Learning (Student Abstract) Liyuan Gao, Matthew Zhang, Victor S. Sheng
MLJ 2024 Survey on Extreme Learning Machines for Outlier Detection Rasoul Kiani, Wei Jin, Victor S. Sheng
AAAI 2023 ACCD: An Adaptive Clustering-Based Collusion Detector in Crowdsourcing (Student Abstract) Ruoyu Xu, Gaoxiang Li, Wei Jin, Austin Chen, Victor S. Sheng
AAAI 2023 Logic Error Localization and Correction with Machine Learning (Student Abstract) Zhenyu Xu, Victor S. Sheng, Keyi Lu
AAAI 2023 Measuring the Privacy Leakage via Graph Reconstruction Attacks on Simplicial Neural Networks (Student Abstract) Huixin Zhan, Kun Zhang, Keyi Lu, Victor S. Sheng
AAAI 2023 Privacy-Preserving Representation Learning for Text-Attributed Networks with Simplicial Complexes Huixin Zhan, Victor S. Sheng
IJCAI 2023 Sequential Recommendation with Probabilistic Logical Reasoning Huanhuan Yuan, Pengpeng Zhao, Xuefeng Xian, Guanfeng Liu, Yanchi Liu, Victor S. Sheng, Lei Zhao
AAAI 2023 Towards Fair and Selectively Privacy-Preserving Models Using Negative Multi-Task Learning (Student Abstract) Liyuan Gao, Huixin Zhan, Austin Chen, Victor S. Sheng
IJCAI 2020 Collaborative Self-Attention Network for Session-Based Recommendation Anjing Luo, Pengpeng Zhao, Yanchi Liu, Fuzhen Zhuang, Deqing Wang, Jiajie Xu, Junhua Fang, Victor S. Sheng
AAAI 2020 Interactive Learning with Proactive Cognition Enhancement for Crowd Workers Jing Zhang, Huihui Wang, Shunmei Meng, Victor S. Sheng
IJCAI 2019 Feature-Level Deeper Self-Attention Network for Sequential Recommendation Tingting Zhang, Pengpeng Zhao, Yanchi Liu, Victor S. Sheng, Jiajie Xu, Deqing Wang, Guanfeng Liu, Xiaofang Zhou
IJCAI 2019 Graph Contextualized Self-Attention Network for Session-Based Recommendation Chengfeng Xu, Pengpeng Zhao, Yanchi Liu, Victor S. Sheng, Jiajie Xu, Fuzhen Zhuang, Junhua Fang, Xiaofang Zhou
AAAI 2019 Machine Learning with Crowdsourcing: A Brief Summary of the past Research and Future Directions Victor S. Sheng, Jing Zhang
AAAI 2019 Where to Go Next: A Spatio-Temporal Gated Network for Next POI Recommendation Pengpeng Zhao, Haifeng Zhu, Yanchi Liu, Jiajie Xu, Zhixu Li, Fuzhen Zhuang, Victor S. Sheng, Xiaofang Zhou
AAAI 2017 Keyphrase Extraction with Sequential Pattern Mining Qingren Wang, Victor S. Sheng, Xindong Wu
IJCAI 2015 Bi-Parameter Space Partition for Cost-Sensitive SVM Bin Gu, Victor S. Sheng, Shuo Li
MLOSS 2015 CEKA: A Tool for Mining the Wisdom of Crowds Jing Zhang, Victor S. Sheng, Bryce A. Nicholson, Xindong Wu
AAAI 2013 Does One-Against-All or One-Against-One Improve the Performance of Multiclass Classifications? Robert Kyle Eichelberger, Victor S. Sheng
AAAI 2013 Empirical Comparison of Multi-Label Classification Algorithms Clifford A. Tawiah, Victor S. Sheng
ICML 2006 Feature Value Acquisition in Testing: A Sequential Batch Test Algorithm Victor S. Sheng, Charles X. Ling
AAAI 2006 Thresholding for Making Classifiers Cost-Sensitive Victor S. Sheng, Charles X. Ling