ML Anthology
Authors
Search
About
Shiragur, Kirankumar
19 publications
ICML
2025
Graph-Based Algorithms for Diverse Similarity Search
Piyush Anand
,
Piotr Indyk
,
Ravishankar Krishnaswamy
,
Sepideh Mahabadi
,
Vikas C. Raykar
,
Kirankumar Shiragur
,
Haike Xu
ICML
2025
Sort Before You Prune: Improved Worst-Case Guarantees of the DiskANN Family of Graphs
Siddharth Gollapudi
,
Ravishankar Krishnaswamy
,
Kirankumar Shiragur
,
Harsh Wardhan
TMLR
2025
Testing with Non-Identically Distributed Samples
Shivam Garg
,
Chirag Pabbaraju
,
Kirankumar Shiragur
,
Gregory Valiant
AISTATS
2024
Causal Discovery Under Off-Target Interventions
Davin Choo
,
Kirankumar Shiragur
,
Caroline Uhler
ICML
2024
Causal Discovery with Fewer Conditional Independence Tests
Kirankumar Shiragur
,
Jiaqi Zhang
,
Caroline Uhler
NeurIPS
2024
Learning Mixtures of Unknown Causal Interventions
Abhinav Kumar
,
Kirankumar Shiragur
,
Caroline Uhler
AISTATS
2024
Membership Testing in Markov Equivalence Classes via Independence Queries
Jiaqi Zhang
,
Kirankumar Shiragur
,
Caroline Uhler
NeurIPS
2024
Quantifying the Gain in Weak-to-Strong Generalization
Moses Charikar
,
Chirag Pabbaraju
,
Kirankumar Shiragur
UAI
2023
Adaptivity Complexity for Causal Graph Discovery
Davin Choo
,
Kirankumar Shiragur
NeurIPS
2023
Meek Separators and Their Applications in Targeted Causal Discovery
Kirankumar Shiragur
,
Jiaqi Zhang
,
Caroline Uhler
ICML
2023
New Metrics and Search Algorithms for Weighted Causal DAGs
Davin Choo
,
Kirankumar Shiragur
NeurIPS
2023
Structured Semidefinite Programming for Recovering Structured Preconditioners
Arun Jambulapati
,
Jerry Li
,
Christopher Musco
,
Kirankumar Shiragur
,
Aaron Sidford
,
Kevin Tian
AISTATS
2023
Subset Verification and Search Algorithms for Causal DAGs
Davin Choo
,
Kirankumar Shiragur
NeurIPS
2022
On the Efficient Implementation of High Accuracy Optimality of Profile Maximum Likelihood
Moses Charikar
,
Zhihao Jiang
,
Kirankumar Shiragur
,
Aaron Sidford
NeurIPS
2022
Verification and Search Algorithms for Causal DAGs
Davin Choo
,
Kirankumar Shiragur
,
Arnab Bhattacharyya
ICML
2021
Reward Identification in Inverse Reinforcement Learning
Kuno Kim
,
Shivam Garg
,
Kirankumar Shiragur
,
Stefano Ermon
COLT
2021
The Bethe and Sinkhorn Permanents of Low Rank Matrices and Implications for Profile Maximum Likelihood
Nima Anari
,
Moses Charikar
,
Kirankumar Shiragur
,
Aaron Sidford
NeurIPS
2020
Instance Based Approximations to Profile Maximum Likelihood
Nima Anari
,
Moses Charikar
,
Kirankumar Shiragur
,
Aaron Sidford
NeurIPS
2019
A General Framework for Symmetric Property Estimation
Moses Charikar
,
Kirankumar Shiragur
,
Aaron Sidford