Simidjievski, Nikola

23 publications

ICLRW 2025 How Well Does Your Tabular Generator Learn the Structure of Tabular Data? Xiangjian Jiang, Nikola Simidjievski, Mateja Jamnik
AAAI 2025 Measuring Cross-Modal Interactions in Multimodal Models Laura Wenderoth, Konstantin Hemker, Nikola Simidjievski, Mateja Jamnik
ICLR 2025 Multimodal Lego: Model Merging and Fine-Tuning Across Topologies and Modalities in Biomedicine Konstantin Hemker, Nikola Simidjievski, Mateja Jamnik
NeurIPSW 2024 Augmenting Small-Size Tabular Data with Class-Specific Energy-Based Models Andrei Margeloiu, Xiangjian Jiang, Nikola Simidjievski, Mateja Jamnik
TMLR 2024 GCondNet: A Novel Method for Improving Neural Networks on Small High-Dimensional Tabular Data Andrei Margeloiu, Nikola Simidjievski, Pietro Lio, Mateja Jamnik
NeurIPS 2024 HEALNet: Multimodal Fusion for Heterogeneous Biomedical Data Konstantin Hemker, Nikola Simidjievski, Mateja Jamnik
NeurIPSW 2024 Multimodal Lego: Model Merging and Fine-Tuning Across Topologies and Modalities Konstantin Hemker, Nikola Simidjievski, Mateja Jamnik
NeurIPSW 2024 Multimodal Lego: Model Merging and Fine-Tuning Across Topologies and Modalities Konstantin Hemker, Nikola Simidjievski, Mateja Jamnik
ICML 2024 ProtoGate: Prototype-Based Neural Networks with Global-to-Local Feature Selection for Tabular Biomedical Data Xiangjian Jiang, Andrei Margeloiu, Nikola Simidjievski, Mateja Jamnik
NeurIPS 2024 TabEBM: A Tabular Data Augmentation Method with Distinct Class-Specific Energy-Based Models Andrei Margeloiu, Xiangjian Jiang, Nikola Simidjievski, Mateja Jamnik
ICMLW 2024 TabMDA: Tabular Manifold Data Augmentation for Any Classifier Using Transformers with In-Context Subsetting Andrei Margeloiu, Adrián Bazaga, Nikola Simidjievski, Pietro Lio, Mateja Jamnik
NeurIPSW 2023 Everybody Needs a Little HELP: Explaining Graphs via Hierarchical Concepts Jonas Jürß, Lucie Charlotte Magister, Pietro Barbiero, Pietro Lio, Nikola Simidjievski
NeurIPSW 2023 GCondNet: A Novel Method for Improving Neural Networks on Small High-Dimensional Tabular Data Andrei Margeloiu, Nikola Simidjievski, Pietro Lio, Mateja Jamnik
NeurIPSW 2023 Hybrid Early Fusion for Multi-Modal Biomedical Representations Konstantin Hemker, Nikola Simidjievski, Mateja Jamnik
ICMLW 2023 ProtoGate: Prototype-Based Neural Networks with Local Feature Selection for Tabular Biomedical Data Xiangjian Jiang, Andrei Margeloiu, Nikola Simidjievski, Mateja Jamnik
NeurIPSW 2023 SHARCS: Shared Concept Space for\\Explainable Multimodal Learning Gabriele Dominici, Pietro Barbiero, Lucie Charlotte Magister, Pietro Lio, Nikola Simidjievski
AAAI 2023 Weight Predictor Network with Feature Selection for Small Sample Tabular Biomedical Data Andrei Margeloiu, Nikola Simidjievski, Pietro Liò, Mateja Jamnik
ICML 2022 Attentional Meta-Learners for Few-Shot Polythetic Classification Ben J Day, Ramon Viñas Torné, Nikola Simidjievski, Pietro Lió
ICMLW 2021 $\alpha$-VAEs : Optimising Variational Inference by Learning Data-Dependent Divergence Skew Jacob Deasy, Tom Andrew McIver, Nikola Simidjievski, Pietro Lio
NeurIPSW 2021 On Second Order Behaviour in Augmented Neural ODEs: A Short Summary Alexander Luke Ian Norcliffe, Cristian Bodnar, Ben Day, Nikola Simidjievski, Pietro Lio
NeurIPS 2020 Constraining Variational Inference with Geometric Jensen-Shannon Divergence Jacob Deasy, Nikola Simidjievski, Pietro Lió
NeurIPS 2020 On Second Order Behaviour in Augmented Neural ODEs Alexander Norcliffe, Cristian Bodnar, Ben Day, Nikola Simidjievski, Pietro Lió
ECML-PKDD 2017 Process-Based Modeling and Design of Dynamical Systems Jovan Tanevski, Nikola Simidjievski, Ljupco Todorovski, Saso Dzeroski