ML Anthology
Authors
Search
About
Singh, Rishabh
25 publications
NeurIPS
2025
SWE-RL: Advancing LLM Reasoning via Reinforcement Learning on Open Software Evolution
Yuxiang Wei
,
Olivier Duchenne
,
Jade Copet
,
Quentin Carbonneaux
,
Lingming Zhang
,
Daniel Fried
,
Gabriel Synnaeve
,
Rishabh Singh
,
Sida Wang
ICML
2023
Measuring the Impact of Programming Language Distribution
Gabriel Orlanski
,
Kefan Xiao
,
Xavier Garcia
,
Jeffrey Hui
,
Joshua Howland
,
Jonathan Malmaud
,
Jacob Austin
,
Rishabh Singh
,
Michele Catasta
ICLR
2021
BUSTLE: Bottom-up Program Synthesis Through Learning-Guided Exploration
Augustus Odena
,
Kensen Shi
,
David Bieber
,
Rishabh Singh
,
Charles Sutton
,
Hanjun Dai
ICML
2021
Latent Programmer: Discrete Latent Codes for Program Synthesis
Joey Hong
,
David Dohan
,
Rishabh Singh
,
Charles Sutton
,
Manzil Zaheer
NeurIPS
2021
Learning Semantic Representations to Verify Hardware Designs
Shobha Vasudevan
,
Wenjie Jiang
,
David Bieber
,
Rishabh Singh
,
Hamid Shojaei
,
C. Richard Ho
,
Charles A. Sutton
ICLR
2021
Scaling Symbolic Methods Using Gradients for Neural Model Explanation
Subham Sekhar Sahoo
,
Subhashini Venugopalan
,
Li Li
,
Rishabh Singh
,
Patrick Riley
ICML
2021
SpreadsheetCoder: Formula Prediction from Semi-Structured Context
Xinyun Chen
,
Petros Maniatis
,
Rishabh Singh
,
Charles Sutton
,
Hanjun Dai
,
Max Lin
,
Denny Zhou
ICML
2020
Generating Programmatic Referring Expressions via Program Synthesis
Jiani Huang
,
Calvin Smith
,
Osbert Bastani
,
Rishabh Singh
,
Aws Albarghouthi
,
Mayur Naik
ICLR
2020
Global Relational Models of Source Code
Vincent J. Hellendoorn
,
Charles Sutton
,
Rishabh Singh
,
Petros Maniatis
,
David Bieber
NeurIPS
2020
Learning Discrete Energy-Based Models via Auxiliary-Variable Local Exploration
Hanjun Dai
,
Rishabh Singh
,
Bo Dai
,
Charles A. Sutton
,
Dale Schuurmans
NeurIPSW
2020
TF-Coder: Program Synthesis for Tensor Manipulations
Kensen Shi
,
David Bieber
,
Rishabh Singh
UAI
2020
Time Series Analysis Using a Kernel Based Multi-Modal Uncertainty Decomposition Framework
Rishabh Singh
,
Jose Principe
NeurIPS
2019
Learning Transferable Graph Exploration
Hanjun Dai
,
Yujia Li
,
Chenglong Wang
,
Rishabh Singh
,
Po-Sen Huang
,
Pushmeet Kohli
ICLR
2019
Neural Program Repair by Jointly Learning to Localize and Repair
Marko Vasic
,
Aditya Kanade
,
Petros Maniatis
,
David Bieber
,
Rishabh Singh
ICLR
2019
Synthetic Datasets for Neural Program Synthesis
Richard Shin
,
Neel Kant
,
Kavi Gupta
,
Chris Bender
,
Brandon Trabucco
,
Rishabh Singh
,
Dawn Song
AAAI
2019
VPDS: An AI-Based Automated Vehicle Occupancy and Violation Detection System
Abhinav Kumar
,
Aishwarya Gupta
,
Bishal Santra
,
K. S. Lalitha
,
Manasa Kolla
,
Mayank Gupta
,
Rishabh Singh
ICLR
2018
Dynamic Neural Program Embeddings for Program Repair
Ke Wang
,
Rishabh Singh
,
Zhendong Su
ICMLW
2018
Execution-Guided Neural Program Decoding
Chenglong Wang
,
Po-Sen Huang
,
Alex Polozov
,
Marc Brockschmidt
,
Rishabh Singh
NeurIPS
2018
Interpreting Neural Network Judgments via Minimal, Stable, and Symbolic Corrections
Xin Zhang
,
Armando Solar-Lezama
,
Rishabh Singh
ICLR
2018
Leveraging Grammar and Reinforcement Learning for Neural Program Synthesis
Rudy Bunel
,
Matthew Hausknecht
,
Jacob Devlin
,
Rishabh Singh
,
Pushmeet Kohli
ICML
2018
Programmatically Interpretable Reinforcement Learning
Abhinav Verma
,
Vijayaraghavan Murali
,
Rishabh Singh
,
Pushmeet Kohli
,
Swarat Chaudhuri
ICMLW
2018
Towards Mixed Optimization forReinforcement Learning with Program Synthesis
Surya Bhupatiraju
,
Kumar Krishna Agrawal
,
Rishabh Singh
NeurIPS
2017
Neural Program Meta-Induction
Jacob Devlin
,
Rudy R Bunel
,
Rishabh Singh
,
Matthew Hausknecht
,
Pushmeet Kohli
ICLR
2017
Neuro-Symbolic Program Synthesis
Emilio Parisotto
,
Abdel-rahman Mohamed
,
Rishabh Singh
,
Lihong Li
,
Dengyong Zhou
,
Pushmeet Kohli
ICML
2017
RobustFill: Neural Program Learning Under Noisy I/O
Jacob Devlin
,
Jonathan Uesato
,
Surya Bhupatiraju
,
Rishabh Singh
,
Abdel-rahman Mohamed
,
Pushmeet Kohli