ML Anthology
Authors
Search
About
Slivkins, Aleksandrs
34 publications
NeurIPS
2025
Greedy Algorithms for Structured Bandits: A Sharp Characterization of Asymptotic Success / Failure
Aleksandrs Slivkins
,
Yunzong Xu
,
Shiliang Zuo
AAAI
2025
Robust Performance Incentivizing Algorithms for Multi-Armed Bandits with Strategic Agents
Seyed A. Esmaeili
,
Suho Shin
,
Aleksandrs Slivkins
COLT
2024
Autobidders with Budget and ROI Constraints: Efficiency, Regret, and Pacing Dynamics
Brendan Lucier
,
Sarath Pattathil
,
Aleksandrs Slivkins
,
Mengxiao Zhang
NeurIPS
2024
Can Large Language Models Explore In-Context?
Akshay Krishnamurthy
,
Keegan Harris
,
Dylan J. Foster
,
Cyril Zhang
,
Aleksandrs Slivkins
ICMLW
2024
Can Large Language Models Explore In-Context?
Akshay Krishnamurthy
,
Keegan Harris
,
Dylan J Foster
,
Cyril Zhang
,
Aleksandrs Slivkins
AAAI
2024
Content Filtering with Inattentive Information Consumers
Ian Ball
,
James W. Bono
,
Justin Grana
,
Nicole Immorlica
,
Brendan Lucier
,
Aleksandrs Slivkins
JMLR
2024
Contextual Bandits with Packing and Covering Constraints: A Modular Lagrangian Approach via Regression
Aleksandrs Slivkins
,
Xingyu Zhou
,
Karthik Abinav Sankararaman
,
Dylan J. Foster
ICML
2024
Impact of Decentralized Learning on Player Utilities in Stackelberg Games
Kate Donahue
,
Nicole Immorlica
,
Meena Jagadeesan
,
Brendan Lucier
,
Aleksandrs Slivkins
NeurIPS
2023
Bandit Social Learning Under Myopic Behavior
Kiarash Banihashem
,
MohammadTaghi Hajiaghayi
,
Suho Shin
,
Aleksandrs Slivkins
COLT
2023
Contextual Bandits with Packing and Covering Constraints: A Modular Lagrangian Approach via Regression
Aleksandrs Slivkins
,
Karthik Abinav Sankararaman
,
Dylan J Foster
NeurIPS
2022
Incentivizing Combinatorial Bandit Exploration
Xinyan Hu
,
Dung Ngo
,
Aleksandrs Slivkins
,
Steven Z. Wu
NeurIPS
2021
Bandits with Knapsacks Beyond the Worst Case
Karthik Abinav Sankararaman
,
Aleksandrs Slivkins
NeurIPS
2020
Constrained Episodic Reinforcement Learning in Concave-Convex and Knapsack Settings
Kianté Brantley
,
Miro Dudik
,
Thodoris Lykouris
,
Sobhan Miryoosefi
,
Max Simchowitz
,
Aleksandrs Slivkins
,
Wen Sun
JMLR
2020
Contextual Bandits with Continuous Actions: Smoothing, Zooming, and Adapting
Akshay Krishnamurthy
,
John Langford
,
Aleksandrs Slivkins
,
Chicheng Zhang
NeurIPS
2020
Efficient Contextual Bandits with Continuous Actions
Maryam Majzoubi
,
Chicheng Zhang
,
Rajan Chari
,
Akshay Krishnamurthy
,
John Langford
,
Aleksandrs Slivkins
COLT
2019
Contextual Bandits with Continuous Actions: Smoothing, Zooming, and Adapting
Akshay Krishnamurthy
,
John Langford
,
Aleksandrs Slivkins
,
Chicheng Zhang
FnTML
2019
Introduction to Multi-Armed Bandits
Aleksandrs Slivkins
AISTATS
2018
Combinatorial Semi-Bandits with Knapsacks
Karthik Abinav Sankararaman
,
Aleksandrs Slivkins
COLT
2018
The Externalities of Exploration and How Data Diversity Helps Exploitation
Manish Raghavan
,
Aleksandrs Slivkins
,
Jennifer Wortman Vaughan
,
Zhiwei Steven Wu
JAIR
2016
Adaptive Contract Design for Crowdsourcing Markets: Bandit Algorithms for Repeated Principal-Agent Problems
Chien-Ju Ho
,
Aleksandrs Slivkins
,
Jennifer Wortman Vaughan
COLT
2015
Contextual Dueling Bandits
Miroslav Dudík
,
Katja Hofmann
,
Robert E. Schapire
,
Aleksandrs Slivkins
,
Masrour Zoghi
JMLR
2014
Contextual Bandits with Similarity Information
Aleksandrs Slivkins
ICML
2014
One Practical Algorithm for Both Stochastic and Adversarial Bandits
Yevgeny Seldin
,
Aleksandrs Slivkins
COLT
2014
Resourceful Contextual Bandits
Ashwinkumar Badanidiyuru
,
John Langford
,
Aleksandrs Slivkins
COLT
2014
Robust Multi-Objective Learning with Mentor Feedback
Alekh Agarwal
,
Ashwinkumar Badanidiyuru
,
Miroslav Dudík
,
Robert E. Schapire
,
Aleksandrs Slivkins
COLT
2013
Adaptive Crowdsourcing Algorithms for the Bandit Survey Problem
Ittai Abraham
,
Omar Alonso
,
Vasilis Kandylas
,
Aleksandrs Slivkins
JMLR
2013
Ranked Bandits in Metric Spaces: Learning Diverse Rankings over Large Document Collections
Aleksandrs Slivkins
,
Filip Radlinski
,
Sreenivas Gollapudi
COLT
2012
The Best of Both Worlds: Stochastic and Adversarial Bandits
Sébastien Bubeck
,
Aleksandrs Slivkins
COLT
2011
Contextual Bandits with Similarity Information
Aleksandrs Slivkins
COLT
2011
Monotone Multi-Armed Bandit Allocations
Aleksandrs Slivkins
NeurIPS
2011
Multi-Armed Bandits on Implicit Metric Spaces
Aleksandrs Slivkins
ICML
2010
Learning Optimally Diverse Rankings over Large Document Collections
Aleksandrs Slivkins
,
Filip Radlinski
,
Sreenivas Gollapudi
NeurIPS
2009
Adapting to the Shifting Intent of Search Queries
Umar Syed
,
Aleksandrs Slivkins
,
Nina Mishra
COLT
2008
Adapting to a Changing Environment: The Brownian Restless Bandits
Aleksandrs Slivkins
,
Eli Upfal