ML Anthology
Authors
Search
About
Smola, Alexander J.
84 publications
JMLR
2023
Flexible Model Aggregation for Quantile Regression
Rasool Fakoor
,
Taesup Kim
,
Jonas Mueller
,
Alexander J. Smola
,
Ryan J. Tibshirani
NeurIPS
2023
Prompt Pre-Training with Twenty-Thousand Classes for Open-Vocabulary Visual Recognition
Shuhuai Ren
,
Aston Zhang
,
Yi Zhu
,
Shuai Zhang
,
Shuai Zheng
,
Mu Li
,
Alexander J Smola
,
Xu Sun
NeurIPS
2022
Adaptive Interest for Emphatic Reinforcement Learning
Martin Klissarov
,
Rasool Fakoor
,
Jonas W Mueller
,
Kavosh Asadi
,
Taesup Kim
,
Alexander J Smola
NeurIPS
2022
Faster Deep Reinforcement Learning with Slower Online Network
Kavosh Asadi
,
Rasool Fakoor
,
Omer Gottesman
,
Taesup Kim
,
Michael L. Littman
,
Alexander J Smola
NeurIPS
2022
Graph Reordering for Cache-Efficient near Neighbor Search
Benjamin Coleman
,
Santiago Segarra
,
Alexander J Smola
,
Anshumali Shrivastava
CVPRW
2022
ResNeSt: Split-Attention Networks
Hang Zhang
,
Chongruo Wu
,
Zhongyue Zhang
,
Yi Zhu
,
Haibin Lin
,
Zhi Zhang
,
Yue Sun
,
Tong He
,
Jonas Mueller
,
R. Manmatha
,
Mu Li
,
Alexander J. Smola
NeurIPS
2021
Continuous Doubly Constrained Batch Reinforcement Learning
Rasool Fakoor
,
Jonas W Mueller
,
Kavosh Asadi
,
Pratik Chaudhari
,
Alexander J Smola
NeurIPS
2021
Deep Explicit Duration Switching Models for Time Series
Abdul Fatir Ansari
,
Konstantinos Benidis
,
Richard Kurle
,
Ali Caner Turkmen
,
Harold Soh
,
Alexander J Smola
,
Bernie Wang
,
Tim Januschowski
NeurIPS
2021
Mixture Proportion Estimation and PU Learning:A Modern Approach
Saurabh Garg
,
Yifan Wu
,
Alexander J Smola
,
Sivaraman Balakrishnan
,
Zachary Lipton
AAAI
2021
Symbolic Music Generation with Transformer-GANs
Aashiq Muhamed
,
Liang Li
,
Xingjian Shi
,
Suri Yaddanapudi
,
Wayne Chi
,
Dylan Jackson
,
Rahul Suresh
,
Zachary C. Lipton
,
Alexander J. Smola
NeurIPS
2020
Fast, Accurate, and Simple Models for Tabular Data via Augmented Distillation
Rasool Fakoor
,
Jonas W Mueller
,
Nick Erickson
,
Pratik Chaudhari
,
Alexander J Smola
ICLR
2020
Meta-Q-Learning
Rasool Fakoor
,
Pratik Chaudhari
,
Stefano Soatto
,
Alexander J. Smola
UAI
2019
Efficient Multitask Feature and Relationship Learning
Han Zhao
,
Otilia Stretcu
,
Alexander J. Smola
,
Geoffrey J. Gordon
ECML-PKDD
2019
FastPoint: Scalable Deep Point Processes
Ali Caner Türkmen
,
Yuyang Wang
,
Alexander J. Smola
UAI
2019
P3O: Policy-on Policy-Off Policy Optimization
Rasool Fakoor
,
Pratik Chaudhari
,
Alexander J. Smola
ICMLW
2019
P3O: Policy-on Policy-Off Policy Optimization
Rasool Fakoor
,
Pratik Chaudhari
,
Alexander J. Smola
AISTATS
2018
A Generic Approach for Escaping Saddle Points
Sashank J. Reddi
,
Manzil Zaheer
,
Suvrit Sra
,
Barnabás Póczos
,
Francis R. Bach
,
Ruslan Salakhutdinov
,
Alexander J. Smola
AAAI
2018
Variational Reasoning for Question Answering with Knowledge Graph
Yuyu Zhang
,
Hanjun Dai
,
Zornitsa Kozareva
,
Alexander J. Smola
,
Le Song
AISTATS
2017
Attributing Hacks
Ziqi Liu
,
Alexander J. Smola
,
Kyle Soska
,
Yu-Xiang Wang
,
Qinghua Zheng
AISTATS
2017
Data Driven Resource Allocation for Distributed Learning
Travis Dick
,
Mu Li
,
Venkata Krishna Pillutla
,
Colin White
,
Nina Balcan
,
Alexander J. Smola
NeurIPS
2017
Deep Sets
Manzil Zaheer
,
Satwik Kottur
,
Siamak Ravanbakhsh
,
Barnabas Poczos
,
Ruslan Salakhutdinov
,
Alexander J Smola
ICLR
2017
Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy
Danica J. Sutherland
,
Hsiao-Yu Tung
,
Heiko Strathmann
,
Soumyajit De
,
Aaditya Ramdas
,
Alexander J. Smola
,
Arthur Gretton
ICLR
2017
Joint Training of Ratings and Reviews with Recurrent Recommender Networks
Chao-Yuan Wu
,
Amr Ahmed
,
Alex Beutel
,
Alexander J. Smola
ICML
2017
Latent LSTM Allocation: Joint Clustering and Non-Linear Dynamic Modeling of Sequence Data
Manzil Zaheer
,
Amr Ahmed
,
Alexander J. Smola
ICCV
2017
Sampling Matters in Deep Embedding Learning
Chao-Yuan Wu
,
R. Manmatha
,
Alexander J. Smola
,
Philipp Krahenbuhl
AISTATS
2016
AdaDelay: Delay Adaptive Distributed Stochastic Optimization
Suvrit Sra
,
Adams Wei Yu
,
Mu Li
,
Alexander J. Smola
AISTATS
2016
Exponential Stochastic Cellular Automata for Massively Parallel Inference
Manzil Zaheer
,
Michael L. Wick
,
Jean-Baptiste Tristan
,
Alexander J. Smola
,
Guy L. Steele Jr.
NeurIPS
2016
Proximal Stochastic Methods for Nonsmooth Nonconvex Finite-Sum Optimization
Sashank J. Reddi
,
Suvrit Sra
,
Barnabas Poczos
,
Alexander J Smola
JMLR
2016
Trend Filtering on Graphs
Yu-Xiang Wang
,
James Sharpnack
,
Alexander J. Smola
,
Ryan J. Tibshirani
NeurIPS
2016
Variance Reduction in Stochastic Gradient Langevin Dynamics
Kumar Avinava Dubey
,
Sashank J. Reddi
,
Sinead A Williamson
,
Barnabas Poczos
,
Alexander J Smola
,
Eric P Xing
AISTATS
2015
A La Carte - Learning Fast Kernels
Zichao Yang
,
Andrew Gordon Wilson
,
Alexander J. Smola
,
Le Song
UAI
2015
Communication Efficient Coresets for Empirical Loss Minimization
Sashank J. Reddi
,
Barnabás Póczos
,
Alexander J. Smola
AAAI
2015
Doubly Robust Covariate Shift Correction
Sashank Jakkam Reddi
,
Barnabás Póczos
,
Alexander J. Smola
NeurIPS
2015
Fast and Guaranteed Tensor Decomposition via Sketching
Yining Wang
,
Hsiao-Yu Tung
,
Alexander J Smola
,
Anima Anandkumar
NeurIPS
2015
On Variance Reduction in Stochastic Gradient Descent and Its Asynchronous Variants
Sashank J. Reddi
,
Ahmed Hefny
,
Suvrit Sra
,
Barnabas Poczos
,
Alexander J Smola
AISTATS
2015
Preferential Attachment in Graphs with Affinities
Jay Lee
,
Manzil Zaheer
,
Stephan Günnemann
,
Alexander J. Smola
AISTATS
2015
Trend Filtering on Graphs
Yu-Xiang Wang
,
James Sharpnack
,
Alexander J. Smola
,
Ryan J. Tibshirani
NeurIPS
2014
Communication Efficient Distributed Machine Learning with the Parameter Server
Mu Li
,
David G Andersen
,
Alexander J Smola
,
Kai Yu
NeurIPS
2014
Spectral Methods for Indian Buffet Process Inference
Hsiao-Yu Tung
,
Alexander J Smola
NeurIPS
2013
Variance Reduction for Stochastic Gradient Optimization
Chong Wang
,
Xi Chen
,
Alexander J Smola
,
Eric P Xing
ICML
2012
Exponential Regret Bounds for Gaussian Process Bandits with Deterministic Observations
Nando de Freitas
,
Alexander J. Smola
,
Masrour Zoghi
UAI
2012
Hokusai - Sketching Streams in Real Time
Sergiy Matusevych
,
Alexander J. Smola
,
Amr Ahmed
MLJ
2011
Guest Editorial: Model Selection and Optimization in Machine Learning
Süreyya Özögür-Akyüz
,
Devrim Ünay
,
Alexander J. Smola
ICML
2010
Hilbert Space Embeddings of Hidden Markov Models
Le Song
,
Byron Boots
,
Sajid M. Siddiqi
,
Geoffrey J. Gordon
,
Alexander J. Smola
UAI
2010
Super-Samples from Kernel Herding
Yutian Chen
,
Max Welling
,
Alexander J. Smola
ICML
2009
Feature Hashing for Large Scale Multitask Learning
Kilian Q. Weinberger
,
Anirban Dasgupta
,
John Langford
,
Alexander J. Smola
,
Josh Attenberg
ICML
2009
Hilbert Space Embeddings of Conditional Distributions with Applications to Dynamical Systems
Le Song
,
Jonathan Huang
,
Alexander J. Smola
,
Kenji Fukumizu
CVPR
2008
Discriminative Human Action Segmentation and Recognition Using Semi-Markov Model
Qinfeng Shi
,
Li Wang
,
Li Cheng
,
Alexander J. Smola
ICML
2008
Estimating Labels from Label Proportions
Novi Quadrianto
,
Alexander J. Smola
,
Tibério S. Caetano
,
Quoc V. Le
ECML-PKDD
2008
Improving Maximum Margin Matrix Factorization
Markus Weimer
,
Alexandros Karatzoglou
,
Alexander J. Smola
MLJ
2008
Improving Maximum Margin Matrix Factorization
Markus Weimer
,
Alexandros Karatzoglou
,
Alexander J. Smola
ICML
2008
Tailoring Density Estimation via Reproducing Kernel Moment Matching
Le Song
,
Xinhua Zhang
,
Alexander J. Smola
,
Arthur Gretton
,
Bernhard Schölkopf
ICML
2007
A Dependence Maximization View of Clustering
Le Song
,
Alexander J. Smola
,
Arthur Gretton
,
Karsten M. Borgwardt
ALT
2007
A Hilbert Space Embedding for Distributions
Alexander J. Smola
,
Arthur Gretton
,
Le Song
,
Bernhard Schölkopf
AAAI
2007
A Kernel Approach to Comparing Distributions
Arthur Gretton
,
Karsten M. Borgwardt
,
Malte J. Rasch
,
Bernhard Schölkopf
,
Alexander J. Smola
ICCV
2007
Learning Graph Matching
Tibério S. Caetano
,
Li Cheng
,
Quoc V. Le
,
Alexander J. Smola
ICML
2007
Supervised Feature Selection via Dependence Estimation
Le Song
,
Alexander J. Smola
,
Arthur Gretton
,
Karsten M. Borgwardt
,
Justin Bedo
ICML
2006
Learning High-Order MRF Priors of Color Images
Julian J. McAuley
,
Tibério S. Caetano
,
Alexander J. Smola
,
Matthias O. Franz
JMLR
2006
Nonparametric Quantile Estimation
Ichiro Takeuchi
,
Quoc V. Le
,
Timothy D. Sears
,
Alexander J. Smola
JMLR
2006
Second Order Cone Programming Approaches for Handling Missing and Uncertain Data
Pannagadatta K. Shivaswamy
,
Chiranjib Bhattacharyya
,
Alexander J. Smola
ICML
2006
Simpler Knowledge-Based Support Vector Machines
Quoc V. Le
,
Alexander J. Smola
,
Thomas Gärtner
ECML-PKDD
2006
Transductive Gaussian Process Regression with Automatic Model Selection
Quoc V. Le
,
Alexander J. Smola
,
Thomas Gärtner
,
Yasemin Altun
COLT
2006
Unifying Divergence Minimization and Statistical Inference via Convex Duality
Yasemin Altun
,
Alexander J. Smola
ICML
2005
Heteroscedastic Gaussian Process Regression
Quoc V. Le
,
Alexander J. Smola
,
Stéphane Canu
JMLR
2005
Learning the Kernel with Hyperkernels
Cheng Soon Ong
,
Alexander J. Smola
,
Robert C. Williamson
ALT
2005
Measuring Statistical Dependence with Hilbert-Schmidt Norms
Arthur Gretton
,
Olivier Bousquet
,
Alexander J. Smola
,
Bernhard Schölkopf
UAI
2004
Exponential Families for Conditional Random Fields
Yasemin Altun
,
Alexander J. Smola
,
Thomas Hofmann
ICML
2004
Gaussian Process Classification for Segmenting and Annotating Sequences
Yasemin Altun
,
Thomas Hofmann
,
Alexander J. Smola
ICML
2004
Learning with Non-Positive Kernels
Cheng Soon Ong
,
Xavier Mary
,
Stéphane Canu
,
Alexander J. Smola
COLT
2003
Kernels and Regularization on Graphs
Alexander J. Smola
,
Risi Kondor
ICML
2003
Machine Learning with Hyperkernels
Cheng Soon Ong
,
Alexander J. Smola
ICML
2003
SimpleSVM
S. V. N. Vishwanathan
,
Alexander J. Smola
,
M. Narasimha Murty
ALT
2002
Large Margin Classification for Moving Targets
Jyrki Kivinen
,
Alexander J. Smola
,
Robert C. Williamson
JMLR
2002
Minimal Kernel Classifiers (Kernel Machines Section)
Glenn M. Fung
,
Olvi L. Mangasarian
,
Alexander J. Smola
ICML
2002
Multi-Instance Kernels
Thomas Gärtner
,
Peter A. Flach
,
Adam Kowalczyk
,
Alexander J. Smola
COLT
2001
A Generalized Representer Theorem
Bernhard Schölkopf
,
Ralf Herbrich
,
Alexander J. Smola
AISTATS
2001
An Improved Training Algorithm for Kernel Fisher Discriminants
Sebastian Mika
,
Alexander J. Smola
,
Bernhard Schölkopf
NeCo
2001
Estimating the Support of a High-Dimensional Distribution
Bernhard Schölkopf
,
John C. Platt
,
John Shawe-Taylor
,
Alexander J. Smola
,
Robert C. Williamson
JMLR
2001
Regularized Principal Manifolds (Kernel Machines Section)
Alexander J. Smola
,
Sebastian Mika
,
Bernhard Schölkopf
,
Robert C. Williamson
COLT
2000
Entropy Numbers of Linear Function Classes
Robert C. Williamson
,
Alexander J. Smola
,
Bernhard Schölkopf
NeCo
2000
New Support Vector Algorithms
Bernhard Schölkopf
,
Alexander J. Smola
,
Robert C. Williamson
,
Peter L. Bartlett
ICML
2000
Query Learning with Large Margin Classifiers
Colin Campbell
,
Nello Cristianini
,
Alexander J. Smola
ICML
2000
Sparse Greedy Matrix Approximation for Machine Learning
Alexander J. Smola
,
Bernhard Schölkopf
NeCo
1998
Nonlinear Component Analysis as a Kernel Eigenvalue Problem
Bernhard Schölkopf
,
Alexander J. Smola
,
Klaus-Robert Müller