Sohl-Dickstein, Jascha

63 publications

TMLR 2024 Beyond Human Data: Scaling Self-Training for Problem-Solving with Language Models Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Xavier Garcia, Peter J Liu, James Harrison, Jaehoon Lee, Kelvin Xu, Aaron T Parisi, Abhishek Kumar, Alexander A Alemi, Alex Rizkowsky, Azade Nova, Ben Adlam, Bernd Bohnet, Gamaleldin Fathy Elsayed, Hanie Sedghi, Igor Mordatch, Isabelle Simpson, Izzeddin Gur, Jasper Snoek, Jeffrey Pennington, Jiri Hron, Kathleen Kenealy, Kevin Swersky, Kshiteej Mahajan, Laura A Culp, Lechao Xiao, Maxwell Bileschi, Noah Constant, Roman Novak, Rosanne Liu, Tris Warkentin, Yamini Bansal, Ethan Dyer, Behnam Neyshabur, Jascha Sohl-Dickstein, Noah Fiedel
ICML 2024 Position: Levels of AGI for Operationalizing Progress on the Path to AGI Meredith Ringel Morris, Jascha Sohl-Dickstein, Noah Fiedel, Tris Warkentin, Allan Dafoe, Aleksandra Faust, Clement Farabet, Shane Legg
ICML 2024 Scaling Exponents Across Parameterizations and Optimizers Katie E Everett, Lechao Xiao, Mitchell Wortsman, Alexander A Alemi, Roman Novak, Peter J Liu, Izzeddin Gur, Jascha Sohl-Dickstein, Leslie Pack Kaelbling, Jaehoon Lee, Jeffrey Pennington
ICLR 2024 Small-Scale Proxies for Large-Scale Transformer Training Instabilities Mitchell Wortsman, Peter J Liu, Lechao Xiao, Katie E Everett, Alexander A Alemi, Ben Adlam, John D Co-Reyes, Izzeddin Gur, Abhishek Kumar, Roman Novak, Jeffrey Pennington, Jascha Sohl-Dickstein, Kelvin Xu, Jaehoon Lee, Justin Gilmer, Simon Kornblith
TMLR 2024 Training LLMs over Neurally Compressed Text Brian Lester, Jaehoon Lee, Alexander A Alemi, Jeffrey Pennington, Adam Roberts, Jascha Sohl-Dickstein, Noah Constant
TMLR 2023 Beyond the Imitation Game: Quantifying and Extrapolating the Capabilities of Language Models Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch, Adam R. Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, Agnieszka Kluska, Aitor Lewkowycz, Akshat Agarwal, Alethea Power, Alex Ray, Alex Warstadt, Alexander W. Kocurek, Ali Safaya, Ali Tazarv, Alice Xiang, Alicia Parrish, Allen Nie, Aman Hussain, Amanda Askell, Amanda Dsouza, Ambrose Slone, Ameet Rahane, Anantharaman S. Iyer, Anders Johan Andreassen, Andrea Madotto, Andrea Santilli, Andreas Stuhlmüller, Andrew M. Dai, Andrew La, Andrew Kyle Lampinen, Andy Zou, Angela Jiang, Angelica Chen, Anh Vuong, Animesh Gupta, Anna Gottardi, Antonio Norelli, Anu Venkatesh, Arash Gholamidavoodi, Arfa Tabassum, Arul Menezes, Arun Kirubarajan, Asher Mullokandov, Ashish Sabharwal, Austin Herrick, Avia Efrat, Aykut Erdem, Ayla Karakaş, B. Ryan Roberts, Bao Sheng Loe, Barret Zoph, Bartłomiej Bojanowski, Batuhan Özyurt, Behnam Hedayatnia, Behnam Neyshabur, Benjamin Inden, Benno Stein, Berk Ekmekci, Bill Yuchen Lin, Blake Howald, Bryan Orinion, Cameron Diao, Cameron Dour, Catherine Stinson, Cedrick Argueta, Cesar Ferri, Chandan Singh, Charles Rathkopf, Chenlin Meng, Chitta Baral, Chiyu Wu, Chris Callison-Burch, Christopher Waites, Christian Voigt, Christopher D Manning, Christopher Potts, Cindy Ramirez, Clara E. Rivera, Clemencia Siro, Colin Raffel, Courtney Ashcraft, Cristina Garbacea, Damien Sileo, Dan Garrette, Dan Hendrycks, Dan Kilman, Dan Roth, C. Daniel Freeman, Daniel Khashabi, Daniel Levy, Daniel Moseguí González, Danielle Perszyk, Danny Hernandez, Danqi Chen, Daphne Ippolito, Dar Gilboa, David Dohan, David Drakard, David Jurgens, Debajyoti Datta, Deep Ganguli, Denis Emelin, Denis Kleyko, Deniz Yuret, Derek Chen, Derek Tam, Dieuwke Hupkes, Diganta Misra, Dilyar Buzan, Dimitri Coelho Mollo, Diyi Yang, Dong-Ho Lee, Dylan Schrader, Ekaterina Shutova, Ekin Dogus Cubuk, Elad Segal, Eleanor Hagerman, Elizabeth Barnes, Elizabeth Donoway, Ellie Pavlick, Emanuele Rodolà, Emma Lam, Eric Chu, Eric Tang, Erkut Erdem, Ernie Chang, Ethan A Chi, Ethan Dyer, Ethan Jerzak, Ethan Kim, Eunice Engefu Manyasi, Evgenii Zheltonozhskii, Fanyue Xia, Fatemeh Siar, Fernando Martínez-Plumed, Francesca Happé, Francois Chollet, Frieda Rong, Gaurav Mishra, Genta Indra Winata, Gerard de Melo, Germàn Kruszewski, Giambattista Parascandolo, Giorgio Mariani, Gloria Xinyue Wang, Gonzalo Jaimovitch-Lopez, Gregor Betz, Guy Gur-Ari, Hana Galijasevic, Hannah Kim, Hannah Rashkin, Hannaneh Hajishirzi, Harsh Mehta, Hayden Bogar, Henry Francis Anthony Shevlin, Hinrich Schuetze, Hiromu Yakura, Hongming Zhang, Hugh Mee Wong, Ian Ng, Isaac Noble, Jaap Jumelet, Jack Geissinger, Jackson Kernion, Jacob Hilton, Jaehoon Lee, Jaime Fernández Fisac, James B Simon, James Koppel, James Zheng, James Zou, Jan Kocon, Jana Thompson, Janelle Wingfield, Jared Kaplan, Jarema Radom, Jascha Sohl-Dickstein, Jason Phang, Jason Wei, Jason Yosinski, Jekaterina Novikova, Jelle Bosscher, Jennifer Marsh, Jeremy Kim, Jeroen Taal, Jesse Engel, Jesujoba Alabi, Jiacheng Xu, Jiaming Song, Jillian Tang, Joan Waweru, John Burden, John Miller, John U. Balis, Jonathan Batchelder, Jonathan Berant, Jörg Frohberg, Jos Rozen, Jose Hernandez-Orallo, Joseph Boudeman, Joseph Guerr, Joseph Jones, Joshua B. Tenenbaum, Joshua S. Rule, Joyce Chua, Kamil Kanclerz, Karen Livescu, Karl Krauth, Karthik Gopalakrishnan, Katerina Ignatyeva, Katja Markert, Kaustubh Dhole, Kevin Gimpel, Kevin Omondi, Kory Wallace Mathewson, Kristen Chiafullo, Ksenia Shkaruta, Kumar Shridhar, Kyle McDonell, Kyle Richardson, Laria Reynolds, Leo Gao, Li Zhang, Liam Dugan, Lianhui Qin, Lidia Contreras-Ochando, Louis-Philippe Morency, Luca Moschella, Lucas Lam, Lucy Noble, Ludwig Schmidt, Luheng He, Luis Oliveros-Colón, Luke Metz, Lütfi Kerem Senel, Maarten Bosma, Maarten Sap, Maartje Ter Hoeve, Maheen Farooqi, Manaal Faruqui, Mantas Mazeika, Marco Baturan, Marco Marelli, Marco Maru, Maria Jose Ramirez-Quintana, Marie Tolkiehn, Mario Giulianelli, Martha Lewis, Martin Potthast, Matthew L Leavitt, Matthias Hagen, Mátyás Schubert, Medina Orduna Baitemirova, Melody Arnaud, Melvin McElrath, Michael Andrew Yee, Michael Cohen, Michael Gu, Michael Ivanitskiy, Michael Starritt, Michael Strube, Michał Swędrowski, Michele Bevilacqua, Michihiro Yasunaga, Mihir Kale, Mike Cain, Mimee Xu, Mirac Suzgun, Mitch Walker, Mo Tiwari, Mohit Bansal, Moin Aminnaseri, Mor Geva, Mozhdeh Gheini, Mukund Varma T, Nanyun Peng, Nathan Andrew Chi, Nayeon Lee, Neta Gur-Ari Krakover, Nicholas Cameron, Nicholas Roberts, Nick Doiron, Nicole Martinez, Nikita Nangia, Niklas Deckers, Niklas Muennighoff, Nitish Shirish Keskar, Niveditha S. Iyer, Noah Constant, Noah Fiedel, Nuan Wen, Oliver Zhang, Omar Agha, Omar Elbaghdadi, Omer Levy, Owain Evans, Pablo Antonio Moreno Casares, Parth Doshi, Pascale Fung, Paul Pu Liang, Paul Vicol, Pegah Alipoormolabashi, Peiyuan Liao, Percy Liang, Peter W Chang, Peter Eckersley, Phu Mon Htut, Pinyu Hwang, Piotr Miłkowski, Piyush Patil, Pouya Pezeshkpour, Priti Oli, Qiaozhu Mei, Qing Lyu, Qinlang Chen, Rabin Banjade, Rachel Etta Rudolph, Raefer Gabriel, Rahel Habacker, Ramon Risco, Raphaël Millière, Rhythm Garg, Richard Barnes, Rif A. Saurous, Riku Arakawa, Robbe Raymaekers, Robert Frank, Rohan Sikand, Roman Novak, Roman Sitelew, Ronan Le Bras, Rosanne Liu, Rowan Jacobs, Rui Zhang, Russ Salakhutdinov, Ryan Andrew Chi, Seungjae Ryan Lee, Ryan Stovall, Ryan Teehan, Rylan Yang, Sahib Singh, Saif M. Mohammad, Sajant Anand, Sam Dillavou, Sam Shleifer, Sam Wiseman, Samuel Gruetter, Samuel R. Bowman, Samuel Stern Schoenholz, Sanghyun Han, Sanjeev Kwatra, Sarah A. Rous, Sarik Ghazarian, Sayan Ghosh, Sean Casey, Sebastian Bischoff, Sebastian Gehrmann, Sebastian Schuster, Sepideh Sadeghi, Shadi Hamdan, Sharon Zhou, Shashank Srivastava, Sherry Shi, Shikhar Singh, Shima Asaadi, Shixiang Shane Gu, Shubh Pachchigar, Shubham Toshniwal, Shyam Upadhyay, Shyamolima Shammie Debnath, Siamak Shakeri, Simon Thormeyer, Simone Melzi, Siva Reddy, Sneha Priscilla Makini, Soo-Hwan Lee, Spencer Torene, Sriharsha Hatwar, Stanislas Dehaene, Stefan Divic, Stefano Ermon, Stella Biderman, Stephanie Lin, Stephen Prasad, Steven Piantadosi, Stuart Shieber, Summer Misherghi, Svetlana Kiritchenko, Swaroop Mishra, Tal Linzen, Tal Schuster, Tao Li, Tao Yu, Tariq Ali, Tatsunori Hashimoto, Te-Lin Wu, Théo Desbordes, Theodore Rothschild, Thomas Phan, Tianle Wang, Tiberius Nkinyili, Timo Schick, Timofei Kornev, Titus Tunduny, Tobias Gerstenberg, Trenton Chang, Trishala Neeraj, Tushar Khot, Tyler Shultz, Uri Shaham, Vedant Misra, Vera Demberg, Victoria Nyamai, Vikas Raunak, Vinay Venkatesh Ramasesh, Vinay Uday Prabhu, Vishakh Padmakumar, Vivek Srikumar, William Fedus, William Saunders, William Zhang, Wout Vossen, Xiang Ren, Xiaoyu Tong, Xinran Zhao, Xinyi Wu, Xudong Shen, Yadollah Yaghoobzadeh, Yair Lakretz, Yangqiu Song, Yasaman Bahri, Yejin Choi, Yichi Yang, Sophie Hao, Yifu Chen, Yonatan Belinkov, Yu Hou, Yufang Hou, Yuntao Bai, Zachary Seid, Zhuoye Zhao, Zijian Wang, Zijie J. Wang, Zirui Wang, Ziyi Wu
ICML 2023 Reduce, Reuse, Recycle: Compositional Generation with Energy-Based Diffusion Models and MCMC Yilun Du, Conor Durkan, Robin Strudel, Joshua B. Tenenbaum, Sander Dieleman, Rob Fergus, Jascha Sohl-Dickstein, Arnaud Doucet, Will Sussman Grathwohl
NeurIPSW 2023 Towards General-Purpose In-Context Learning Agents Louis Kirsch, James Harrison, C. Daniel Freeman, Jascha Sohl-Dickstein, Jürgen Schmidhuber
NeurIPSW 2023 Towards General-Purpose In-Context Learning Agents Louis Kirsch, James Harrison, C. Daniel Freeman, Jascha Sohl-Dickstein, Jürgen Schmidhuber
NeurIPSW 2023 Towards General-Purpose In-Context Learning Agents Louis Kirsch, James Harrison, C. Freeman, Jascha Sohl-Dickstein, Jürgen Schmidhuber
NeurIPSW 2023 Towards General-Purpose In-Context Learning Agents Louis Kirsch, James Harrison, C. Freeman, Jascha Sohl-Dickstein, Jürgen Schmidhuber
NeurIPS 2023 Variance-Reduced Gradient Estimation via Noise-Reuse in Online Evolution Strategies Oscar Li, James Harrison, Jascha Sohl-Dickstein, Virginia Smith, Luke Metz
NeurIPS 2022 A Closer Look at Learned Optimization: Stability, Robustness, and Inductive Biases James Harrison, Luke Metz, Jascha Sohl-Dickstein
ICML 2022 Fast Finite Width Neural Tangent Kernel Roman Novak, Jascha Sohl-Dickstein, Samuel S Schoenholz
NeurIPSW 2022 General-Purpose In-Context Learning by Meta-Learning Transformers Louis Kirsch, James Harrison, Jascha Sohl-Dickstein, Luke Metz
CoLLAs 2022 Practical Tradeoffs Between Memory, Compute, and Performance in Learned Optimizers Luke Metz, C. Daniel Freeman, James Harrison, Niru Maheswaranathan, Jascha Sohl-dickstein
IJCAI 2022 Unbiased Gradient Estimation in Unrolled Computation Graphs with Persistent Evolution Strategies (Extended Abstract) Paul Vicol, Luke Metz, Jascha Sohl-Dickstein
ICML 2022 Wide Bayesian Neural Networks Have a Simple Weight Posterior: Theory and Accelerated Sampling Jiri Hron, Roman Novak, Jeffrey Pennington, Jascha Sohl-Dickstein
NeurIPS 2021 Reverse Engineering Learned Optimizers Reveals Known and Novel Mechanisms Niru Maheswaranathan, David Sussillo, Luke Metz, Ruoxi Sun, Jascha Sohl-Dickstein
ICLR 2021 Score-Based Generative Modeling Through Stochastic Differential Equations Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, Ben Poole
ICML 2021 Unbiased Gradient Estimation in Unrolled Computation Graphs with Persistent Evolution Strategies Paul Vicol, Luke Metz, Jascha Sohl-Dickstein
ICML 2021 Whitening and Second Order Optimization Both Make Information in the Dataset Unusable During Training, and Can Reduce or Prevent Generalization Neha Wadia, Daniel Duckworth, Samuel S Schoenholz, Ethan Dyer, Jascha Sohl-Dickstein
NeurIPS 2020 Finite Versus Infinite Neural Networks: An Empirical Study Jaehoon Lee, Samuel Schoenholz, Jeffrey Pennington, Ben Adlam, Lechao Xiao, Roman Novak, Jascha Sohl-Dickstein
ICML 2020 Infinite Attention: NNGP and NTK for Deep Attention Networks Jiri Hron, Yasaman Bahri, Jascha Sohl-Dickstein, Roman Novak
ICLR 2020 Neural Tangents: Fast and Easy Infinite Neural Networks in Python Roman Novak, Lechao Xiao, Jiri Hron, Jaehoon Lee, Alexander A. Alemi, Jascha Sohl-Dickstein, Samuel S. Schoenholz
NeurIPS 2020 Your GAN Is Secretly an Energy-Based Model and You Should Use Discriminator Driven Latent Sampling Tong Che, Ruixiang Zhang, Jascha Sohl-Dickstein, Hugo Larochelle, Liam Paull, Yuan Cao, Yoshua Bengio
ICLR 2019 A Mean Field Theory of Batch Normalization Greg Yang, Jeffrey Pennington, Vinay Rao, Jascha Sohl-Dickstein, Samuel S. Schoenholz
ICLRW 2019 A RAD Approach to Deep Mixture Models Laurent Dinh, Jascha Sohl-Dickstein, Razvan Pascanu, Hugo Larochelle
ICLR 2019 Adversarial Reprogramming of Neural Networks Gamaleldin F. Elsayed, Ian Goodfellow, Jascha Sohl-Dickstein
ICLR 2019 Bayesian Deep Convolutional Networks with Many Channels Are Gaussian Processes Roman Novak, Lechao Xiao, Yasaman Bahri, Jaehoon Lee, Greg Yang, Jiri Hron, Daniel A. Abolafia, Jeffrey Pennington, Jascha Sohl-dickstein
ICML 2019 Guided Evolutionary Strategies: Augmenting Random Search with Surrogate Gradients Niru Maheswaranathan, Luke Metz, George Tucker, Dami Choi, Jascha Sohl-Dickstein
NeurIPS 2019 Invertible Convolutional Flow Mahdi Karami, Dale Schuurmans, Jascha Sohl-Dickstein, Laurent Dinh, Daniel Duckworth
JMLR 2019 Measuring the Effects of Data Parallelism on Neural Network Training Christopher J. Shallue, Jaehoon Lee, Joseph Antognini, Jascha Sohl-Dickstein, Roy Frostig, George E. Dahl
ICLR 2019 Meta-Learning Update Rules for Unsupervised Representation Learning Luke Metz, Niru Maheswaranathan, Brian Cheung, Jascha Sohl-Dickstein
NeurIPSW 2019 Neural Reparameterization Improves Structural Optimization Stephan Hoyer, Jascha Sohl-Dickstein, Sam Greydanus
ICML 2019 The Effect of Network Width on Stochastic Gradient Descent and Generalization: An Empirical Study Daniel Park, Jascha Sohl-Dickstein, Quoc Le, Samuel Smith
ICML 2019 Understanding and Correcting Pathologies in the Training of Learned Optimizers Luke Metz, Niru Maheswaranathan, Jeremy Nixon, Daniel Freeman, Jascha Sohl-Dickstein
NeurIPS 2019 Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-Dickstein, Jeffrey Pennington
NeurIPS 2018 Adversarial Examples That Fool Both Computer Vision and Time-Limited Humans Gamaleldin Elsayed, Shreya Shankar, Brian Cheung, Nicolas Papernot, Alexey Kurakin, Ian Goodfellow, Jascha Sohl-Dickstein
ICLR 2018 Deep Neural Networks as Gaussian Processes Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S. Schoenholz, Jeffrey Pennington, Jascha Sohl-Dickstein
ICML 2018 Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-Layer Vanilla Convolutional Neural Networks Lechao Xiao, Yasaman Bahri, Jascha Sohl-Dickstein, Samuel Schoenholz, Jeffrey Pennington
ICLR 2018 Generalizing Hamiltonian Monte Carlo with Neural Networks Daniel Levy, Matt D. Hoffman, Jascha Sohl-Dickstein
NeurIPS 2018 PCA of High Dimensional Random Walks with Comparison to Neural Network Training Joseph Antognini, Jascha Sohl-Dickstein
ICLR 2018 Sensitivity and Generalization in Neural Networks: An Empirical Study Roman Novak, Yasaman Bahri, Daniel A. Abolafia, Jeffrey Pennington, Jascha Sohl-Dickstein
ICLR 2017 Capacity and Trainability in Recurrent Neural Networks Jasmine Collins, Jascha Sohl-Dickstein, David Sussillo
ICLR 2017 Deep Information Propagation Samuel S. Schoenholz, Justin Gilmer, Surya Ganguli, Jascha Sohl-Dickstein
ICLR 2017 Density Estimation Using Real NVP Laurent Dinh, Jascha Sohl-Dickstein, Samy Bengio
ICLR 2017 Explaining the Learning Dynamics of Direct Feedback Alignment Justin Gilmer, Colin Raffel, Samuel S. Schoenholz, Maithra Raghu, Jascha Sohl-Dickstein
ICML 2017 Input Switched Affine Networks: An RNN Architecture Designed for Interpretability Jakob N. Foerster, Justin Gilmer, Jascha Sohl-Dickstein, Jan Chorowski, David Sussillo
ICML 2017 Learned Optimizers That Scale and Generalize Olga Wichrowska, Niru Maheswaranathan, Matthew W. Hoffman, Sergio Gómez Colmenarejo, Misha Denil, Nando Freitas, Jascha Sohl-Dickstein
ICML 2017 On the Expressive Power of Deep Neural Networks Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, Jascha Sohl-Dickstein
NeurIPS 2017 REBAR: Low-Variance, Unbiased Gradient Estimates for Discrete Latent Variable Models George Tucker, Andriy Mnih, Chris J Maddison, John Lawson, Jascha Sohl-Dickstein
ICLR 2017 REBAR: Low-Variance, Unbiased Gradient Estimates for Discrete Latent Variable Models George Tucker, Andriy Mnih, Chris J. Maddison, Jascha Sohl-Dickstein
NeurIPS 2017 SVCCA: Singular Vector Canonical Correlation Analysis for Deep Learning Dynamics and Interpretability Maithra Raghu, Justin Gilmer, Jason Yosinski, Jascha Sohl-Dickstein
ICLR 2017 Unrolled Generative Adversarial Networks Luke Metz, Ben Poole, David Pfau, Jascha Sohl-Dickstein
NeurIPS 2016 Exponential Expressivity in Deep Neural Networks Through Transient Chaos Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, Surya Ganguli
NeurIPS 2015 Deep Knowledge Tracing Chris Piech, Jonathan Bassen, Jonathan Huang, Surya Ganguli, Mehran Sahami, Leonidas Guibas, Jascha Sohl-Dickstein
ICML 2015 Deep Unsupervised Learning Using Nonequilibrium Thermodynamics Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, Surya Ganguli
ICML 2014 Fast Large-Scale Optimization by Unifying Stochastic Gradient and Quasi-Newton Methods Jascha Sohl-Dickstein, Ben Poole, Surya Ganguli
ICML 2014 Hamiltonian Monte Carlo Without Detailed Balance Jascha Sohl-Dickstein, Mayur Mudigonda, Michael DeWeese
NeurIPS 2012 Training Sparse Natural Image Models with a Fast Gibbs Sampler of an Extended State Space Lucas Theis, Jascha Sohl-dickstein, Matthias Bethge
ICCV 2011 Building a Better Probabilistic Model of Images by Factorization Benjamin J. Culpepper, Jascha Sohl-Dickstein, Bruno A. Olshausen
ICML 2011 Minimum Probability Flow Learning Jascha Sohl-Dickstein, Peter Battaglino, Michael Robert DeWeese