Song, Le

159 publications

NeurIPS 2025 Dimensional Collapse in VQVAEs: Evidence and Remedies Jiayou Zhang, Yifan Shen, Guangyi Chen, Le Song, Eric P. Xing
ICLRW 2025 Machine Learning-Based Optimization for Molten Pool Dynamics in Laser Manufacturing Le Song, Zhiyong Huang, Xuyang Chen
NeurIPS 2025 Protein Inverse Folding from Structure Feedback Junde Xu, Zijun Gao, Xinyi Zhou, Hujie, Xingyi Cheng, Le Song, Guangyong Chen, Pheng-Ann Heng, Jiezhong Qiu
NeurIPS 2025 Pruning Spurious Subgraphs for Graph Out-of-Distribution Generalization Tianjun Yao, Haoxuan Li, Yongqiang Chen, Tongliang Liu, Le Song, Eric P. Xing, Zhiqiang Shen
ICLR 2025 Size-Generalizable RNA Structure Evaluation by Exploring Hierarchical Geometries Zongzhao Li, Jiacheng Cen, Wenbing Huang, Taifeng Wang, Le Song
ICLRW 2025 Towards More Accurate Full-Atom Antibody Co-Design Jiayang Wu, Xingyi Zhang, Xiangyu Dong, Kun Xie, Ziqi Liu, Wensheng Gan, Sibo Wang, Le Song
NeurIPSW 2024 A Large-Scale Foundation Model for RNA Function and Structure Prediction Shuxian Zou, Tianhua Tao, Sazan Mahbub, Caleb Ellington, Robin Jonathan Algayres, Dian Li, Yonghao Zhuang, Hongyi Wang, Le Song, Eric P. Xing
NeurIPSW 2024 Accurate and General DNA Representations Emerge from Genome Foundation Models at Scale Caleb Ellington, Ning Sun, Nicholas Ho, Tianhua Tao, Sazan Mahbub, Dian Li, Yonghao Zhuang, Hongyi Wang, Eric P. Xing, Le Song
NeurIPS 2024 MSAGPT: Neural Prompting Protein Structure Prediction via MSA Generative Pre-Training Bo Chen, Zhilei Bei, Xingyi Cheng, Pan Li, Jie Tang, Le Song
ICMLW 2024 MSAGPT: Neural Prompting Protein Structure Prediction via MSA Generative Pre-Training Bo Chen, Zhilei Bei, Xingyi Cheng, Pan Li, Jie Tang, Le Song
NeurIPSW 2024 Mixture of Experts Enable Efficient and Effective Protein Understanding and Design Ning Sun, Shuxian Zou, Tianhua Tao, Sazan Mahbub, Dian Li, Yonghao Zhuang, Hongyi Wang, Xingyi Cheng, Le Song, Eric P. Xing
ICLR 2024 Optimistic Bayesian Optimization with Unknown Constraints Quoc Phong Nguyen, Wan Theng Ruth Chew, Le Song, Bryan Kian Hsiang Low, Patrick Jaillet
NeurIPSW 2024 Scaling Dense Representations for Single Cell Gene Expression with Transcriptome-Scale Context Nicholas Ho, Caleb Ellington, Jinyu Hou, Sohan Addagudi, Shentong Mo, Tianhua Tao, Dian Li, Yonghao Zhuang, Hongyi Wang, Xingyi Cheng, Le Song, Eric P. Xing
NeurIPS 2024 Training Compute-Optimal Protein Language Models Xingyi Cheng, Bo Chen, Pan Li, Jing Gong, Jie Tang, Le Song
ICMLW 2024 Training Compute-Optimal Protein Language Models Xingyi Cheng, Bo Chen, Pan Li, Jing Gong, Jie Tang, Le Song
ICMLW 2024 Training Compute-Optimal Protein Language Models Xingyi Cheng, Bo Chen, Pan Li, Jing Gong, Jie Tang, Le Song
NeurIPS 2023 Injecting Multimodal Information into Rigid Protein Docking via Bi-Level Optimization Ruijia Wang, YiWu Sun, Yujie Luo, Shaochuan Li, Cheng Yang, Xingyi Cheng, Hui Li, Chuan Shi, Le Song
ICCV 2023 XNet: Wavelet-Based Low and High Frequency Fusion Networks for Fully- and Semi-Supervised Semantic Segmentation of Biomedical Images Yanfeng Zhou, Jiaxing Huang, Chenlong Wang, Le Song, Ge Yang
NeurIPS 2023 xTrimoGene: An Efficient and Scalable Representation Learner for Single-Cell RNA-Seq Data Jing Gong, Minsheng Hao, Xingyi Cheng, Xin Zeng, Chiming Liu, Jianzhu Ma, Xuegong Zhang, Taifeng Wang, Le Song
ICLR 2022 Explaining Point Processes by Learning Interpretable Temporal Logic Rules Shuang Li, Mingquan Feng, Lu Wang, Abdelmajid Essofi, Yufeng Cao, Junchi Yan, Le Song
ICLR 2022 GNN Is a Counter? Revisiting GNN for Question Answering Kuan Wang, Yuyu Zhang, Diyi Yang, Le Song, Tao Qin
ICLR 2022 Provable Learning-Based Algorithm for Sparse Recovery Xinshi Chen, Haoran Sun, Le Song
ICLR 2022 Spanning Tree-Based Graph Generation for Molecules Sungsoo Ahn, Binghong Chen, Tianzhe Wang, Le Song
NeurIPS 2022 Uncovering the Structural Fairness in Graph Contrastive Learning Ruijia Wang, Xiao Wang, Chuan Shi, Le Song
NeurIPS 2021 A Biased Graph Neural Network Sampler with Near-Optimal Regret Qingru Zhang, David P. Wipf, Quan Gan, Le Song
NeurIPSW 2021 Large Scale Coordination Transfer for Cooperative Multi-Agent Reinforcement Learning Ethan Wang, Binghong Chen, Le Song
NeurIPS 2021 Locality Sensitive Teaching Zhaozhuo Xu, Beidi Chen, Chaojian Li, Weiyang Liu, Le Song, Yingyan Lin, Anshumali Shrivastava
ICLR 2021 Molecule Optimization by Explainable Evolution Binghong Chen, Tianzhe Wang, Chengtao Li, Hanjun Dai, Le Song
NeurIPS 2021 Multi-Task Learning of Order-Consistent Causal Graphs Xinshi Chen, Haoran Sun, Caleb Ellington, Eric P. Xing, Le Song
CVPR 2021 Orthogonal Over-Parameterized Training Weiyang Liu, Rongmei Lin, Zhen Liu, James M. Rehg, Liam Paull, Li Xiong, Le Song, Adrian Weller
NeurIPS 2021 RoMA: Robust Model Adaptation for Offline Model-Based Optimization Sihyun Yu, Sungsoo Ahn, Le Song, Jinwoo Shin
NeurIPS 2021 Scallop: From Probabilistic Deductive Databases to Scalable Differentiable Reasoning Jiani Huang, Ziyang Li, Binghong Chen, Karan Samel, Mayur Naik, Le Song, Xujie Si
NeurIPSW 2021 Scallop: From Probabilistic Deductive Databases to Scalable Differentiable Reasoning Jiani Huang, Ziyang Li, Binghong Chen, Karan Samel, Mayur Naik, Le Song, Xujie Si
NeurIPSW 2020 A Framework for Differentiable Discovery of Graph Algorithms Hanjun Dai, Xinshi Chen, Yu Li, Xin Gao, Le Song
AAAI 2020 Accelerating Primal Solution Findings for Mixed Integer Programs Based on Solution Prediction Jian-Ya Ding, Chao Zhang, Lei Shen, Shengyin Li, Bing Wang, Yinghui Xu, Le Song
NeurIPS 2020 Bandit Samplers for Training Graph Neural Networks Ziqi Liu, Zhengwei Wu, Zhiqiang Zhang, Jun Zhou, Shuang Yang, Le Song, Yuan Qi
AAAI 2020 Cost-Effective Incentive Allocation via Structured Counterfactual Inference Romain Lopez, Chenchen Li, Xiang Yan, Junwu Xiong, Michael I. Jordan, Yuan Qi, Le Song
ICLR 2020 Double Neural Counterfactual Regret Minimization Hui Li, Kailiang Hu, Zhibang Ge, Tao Jiang, Yuan Qi, Le Song
ICLR 2020 Efficient Probabilistic Logic Reasoning with Graph Neural Networks Yuyu Zhang, Xinshi Chen, Yuan Yang, Arun Ramamurthy, Bo Li, Yuan Qi, Le Song
ICLR 2020 GLAD: Learning Sparse Graph Recovery Harsh Shrivastava, Xinshi Chen, Binghong Chen, Guanghui Lan, Srinvas Aluru, Han Liu, Le Song
ICLR 2020 Hoppity: Learning Graph Transformations to Detect and Fix Bugs in Programs Elizabeth Dinella, Hanjun Dai, Ziyang Li, Mayur Naik, Le Song, Ke Wang
NeurIPSW 2020 Improving Learning to Branch via Reinforcement Learning Haoran Sun, Wenbo Chen, Hui Li, Le Song
ICLR 2020 Learn to Explain Efficiently via Neural Logic Inductive Learning Yuan Yang, Le Song
ICLR 2020 Learning to Plan in High Dimensions via Neural Exploration-Exploitation Trees Binghong Chen, Bo Dai, Qinjie Lin, Guo Ye, Han Liu, Le Song
ICML 2020 Learning to Stop While Learning to Predict Xinshi Chen, Hanjun Dai, Yu Li, Xin Gao, Le Song
ICLR 2020 RNA Secondary Structure Prediction by Learning Unrolled Algorithms Xinshi Chen, Yu Li, Ramzan Umarov, Xin Gao, Le Song
ICML 2020 Retro*: Learning Retrosynthetic Planning with Neural Guided A* Search Binghong Chen, Chengtao Li, Hanjun Dai, Le Song
ICML 2020 Temporal Logic Point Processes Shuang Li, Lu Wang, Ruizhi Zhang, Xiaofu Chang, Xuqin Liu, Yao Xie, Yuan Qi, Le Song
NeurIPS 2020 The Devil Is in the Detail: A Framework for Macroscopic Prediction via Microscopic Models Yingxiang Yang, Negar Kiyavash, Le Song, Niao He
NeurIPS 2020 Understanding Deep Architecture with Reasoning Layer Xinshi Chen, Yufei Zhang, Christoph Reisinger, Le Song
NeurIPS 2019 Exponential Family Estimation via Adversarial Dynamics Embedding Bo Dai, Zhen Liu, Hanjun Dai, Niao He, Arthur Gretton, Le Song, Dale Schuurmans
ICML 2019 Generative Adversarial User Model for Reinforcement Learning Based Recommendation System Xinshi Chen, Shuang Li, Hui Li, Shaohua Jiang, Yuan Qi, Le Song
AAAI 2019 GeniePath: Graph Neural Networks with Adaptive Receptive Paths Ziqi Liu, Chaochao Chen, Longfei Li, Jun Zhou, Xiaolong Li, Le Song, Yuan Qi
AISTATS 2019 Kernel Exponential Family Estimation via Doubly Dual Embedding Bo Dai, Hanjun Dai, Arthur Gretton, Le Song, Dale Schuurmans, Niao He
ICLR 2019 L-Shapley and C-Shapley: Efficient Model Interpretation for Structured Data Jianbo Chen, Le Song, Martin J. Wainwright, Michael I. Jordan
IJCAI 2019 Large Scale Evolving Graphs with Burst Detection Yifeng Zhao, Xiangwei Wang, Hongxia Yang, Le Song, Jie Tang
AAAI 2019 Latent Dirichlet Allocation for Internet Price War Chenchen Li, Xiang Yan, Xiaotie Deng, Yuan Qi, Wei Chu, Le Song, Junlong Qiao, Jianshan He, Junwu Xiong
ICLR 2019 Learning a Meta-Solver for Syntax-Guided Program Synthesis Xujie Si, Yuan Yang, Hanjun Dai, Mayur Naik, Le Song
NeurIPS 2019 Meta Architecture Search Albert Shaw, Wei Wei, Weiyang Liu, Le Song, Bo Dai
NeurIPS 2019 Neural Similarity Learning Weiyang Liu, Zhen Liu, James M. Rehg, Le Song
ICML 2019 Particle Flow Bayes’ Rule Xinshi Chen, Hanjun Dai, Le Song
NeurIPS 2019 Retrosynthesis Prediction with Conditional Graph Logic Network Hanjun Dai, Chengtao Li, Connor Coley, Bo Dai, Le Song
NeurIPS 2019 Value Propagation for Decentralized Networked Deep Multi-Agent Reinforcement Learning Chao Qu, Shie Mannor, Huan Xu, Yuan Qi, Le Song, Junwu Xiong
AISTATS 2018 A Stochastic Differential Equation Framework for Guiding Online User Activities in Closed Loop Yichen Wang, Evangelos A. Theodorou, Apurv Verma, Le Song
ICML 2018 Adversarial Attack on Graph Structured Data Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, Le Song
ICLR 2018 Boosting the Actor with Dual Critic Bo Dai, Albert Shaw, Niao He, Lihong Li, Le Song
NeurIPS 2018 Coupled Variational Bayes via Optimization Embedding Bo Dai, Hanjun Dai, Niao He, Weiyang Liu, Zhen Liu, Jianshu Chen, Lin Xiao, Le Song
AAAI 2018 Deep Semi-Random Features for Nonlinear Function Approximation Kenji Kawaguchi, Bo Xie, Le Song
AAAI 2018 Learning Conditional Generative Models for Temporal Point Processes Shuai Xiao, Hongteng Xu, Junchi Yan, Mehrdad Farajtabar, Xiaokang Yang, Le Song, Hongyuan Zha
NeurIPS 2018 Learning Loop Invariants for Program Verification Xujie Si, Hanjun Dai, Mukund Raghothaman, Mayur Naik, Le Song
ICML 2018 Learning Steady-States of Iterative Algorithms over Graphs Hanjun Dai, Zornitsa Kozareva, Bo Dai, Alex Smola, Le Song
NeurIPS 2018 Learning Temporal Point Processes via Reinforcement Learning Shuang Li, Shuai Xiao, Shixiang Zhu, Nan Du, Yao Xie, Le Song
NeurIPS 2018 Learning Towards Minimum Hyperspherical Energy Weiyang Liu, Rongmei Lin, Zhen Liu, Lixin Liu, Zhiding Yu, Bo Dai, Le Song
ICML 2018 Learning to Explain: An Information-Theoretic Perspective on Model Interpretation Jianbo Chen, Le Song, Martin Wainwright, Michael Jordan
AISTATS 2018 Multi-Scale Nystrom Method Woosang Lim, Rundong Du, Bo Dai, Kyomin Jung, Le Song, Haesun Park
ICML 2018 SBEED: Convergent Reinforcement Learning with Nonlinear Function Approximation Bo Dai, Albert Shaw, Lihong Li, Lin Xiao, Niao He, Zhen Liu, Jianshu Chen, Le Song
ICML 2018 Stochastic Training of Graph Convolutional Networks with Variance Reduction Jianfei Chen, Jun Zhu, Le Song
ICLR 2018 Syntax-Directed Variational Autoencoder for Structured Data Hanjun Dai, Yingtao Tian, Bo Dai, Steven Skiena, Le Song
ICML 2018 Towards Black-Box Iterative Machine Teaching Weiyang Liu, Bo Dai, Xingguo Li, Zhen Liu, James Rehg, Le Song
AAAI 2018 Variational Reasoning for Question Answering with Knowledge Graph Yuyu Zhang, Hanjun Dai, Zornitsa Kozareva, Alexander J. Smola, Le Song
JMLR 2017 COEVOLVE: A Joint Point Process Model for Information Diffusion and Network Evolution Mehrdad Farajtabar, Yichen Wang, Manuel Gomez-Rodriguez, Shuang Li, Hongyuan Zha, Le Song
NeurIPS 2017 Deep Hyperspherical Learning Weiyang Liu, Yan-Ming Zhang, Xingguo Li, Zhiding Yu, Bo Dai, Tuo Zhao, Le Song
AISTATS 2017 Diverse Neural Network Learns True Target Functions Bo Xie, Yingyu Liang, Le Song
ICML 2017 Fake News Mitigation via Point Process Based Intervention Mehrdad Farajtabar, Jiachen Yang, Xiaojing Ye, Huan Xu, Rakshit Trivedi, Elias Khalil, Shuang Li, Le Song, Hongyuan Zha
ICML 2017 Iterative Machine Teaching Weiyang Liu, Bo Dai, Ahmad Humayun, Charlene Tay, Chen Yu, Linda B. Smith, James M. Rehg, Le Song
ICML 2017 Know-Evolve: Deep Temporal Reasoning for Dynamic Knowledge Graphs Rakshit Trivedi, Hanjun Dai, Yichen Wang, Le Song
NeurIPS 2017 Learning Combinatorial Optimization Algorithms over Graphs Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, Le Song
AISTATS 2017 Learning from Conditional Distributions via Dual Embeddings Bo Dai, Niao He, Yunpeng Pan, Byron Boots, Le Song
AISTATS 2017 Linking Micro Event History to Macro Prediction in Point Process Models Yichen Wang, Xiaojing Ye, Haomin Zhou, Hongyuan Zha, Le Song
NeurIPS 2017 On the Complexity of Learning Neural Networks Le Song, Santosh Vempala, John Wilmes, Bo Xie
NeurIPS 2017 Predicting User Activity Level in Point Processes with Mass Transport Equation Yichen Wang, Xiaojing Ye, Hongyuan Zha, Le Song
ICLR 2017 Recurrent Hidden Semi-Markov Model Hanjun Dai, Bo Dai, Yan-Ming Zhang, Shuang Li, Le Song
JMLR 2017 Scalable Influence Maximization for Multiple Products in Continuous-Time Diffusion Networks Nan Du, Yingyu Liang, Maria-Florina Balcan, Manuel Gomez-Rodriguez, Hongyuan Zha, Le Song
CVPR 2017 SphereFace: Deep Hypersphere Embedding for Face Recognition Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, Le Song
ICML 2017 Stochastic Generative Hashing Bo Dai, Ruiqi Guo, Sanjiv Kumar, Niao He, Le Song
ICML 2017 Variational Policy for Guiding Point Processes Yichen Wang, Grady Williams, Evangelos Theodorou, Le Song
NeurIPS 2017 Wasserstein Learning of Deep Generative Point Process Models Shuai Xiao, Mehrdad Farajtabar, Xiaojing Ye, Junchi Yan, Le Song, Hongyuan Zha
NeurIPS 2016 Coevolutionary Latent Feature Processes for Continuous-Time User-Item Interactions Yichen Wang, Nan Du, Rakshit Trivedi, Le Song
ICML 2016 Discriminative Embeddings of Latent Variable Models for Structured Data Hanjun Dai, Bo Dai, Le Song
JMLR 2016 Estimating Diffusion Networks: Recovery Conditions, Sample Complexity and Soft-Thresholding Algorithm Manuel Gomez-Rodriguez, Le Song, Hadi Daneshm, Bernhard Schölkopf
ICML 2016 Isotonic Hawkes Processes Yichen Wang, Bo Xie, Nan Du, Le Song
AAAI 2016 Learning to Branch in Mixed Integer Programming Elias Boutros Khalil, Pierre Le Bodic, Le Song, George L. Nemhauser, Bistra Dilkina
NeurIPS 2016 Multistage Campaigning in Social Networks Mehrdad Farajtabar, Xiaojing Ye, Sahar Harati, Le Song, Hongyuan Zha
AISTATS 2016 Provable Bayesian Inference via Particle Mirror Descent Bo Dai, Niao He, Hanjun Dai, Le Song
AISTATS 2016 The Nonparametric Kernel Bayes Smoother Yu Nishiyama, Amir Afsharinejad, Shunsuke Naruse, Byron Boots, Le Song
AISTATS 2015 A La Carte - Learning Fast Kernels Zichao Yang, Andrew Gordon Wilson, Alexander J. Smola, Le Song
AISTATS 2015 Back to the past: Source Identification in Diffusion Networks from Partially Observed Cascades Mehrdad Farajtabar, Manuel Gomez-Rodriguez, Mohammad Zamani, Nan Du, Hongyuan Zha, Le Song
NeurIPS 2015 COEVOLVE: A Joint Point Process Model for Information Diffusion and Network Co-Evolution Mehrdad Farajtabar, Yichen Wang, Manuel Gomez Rodriguez, Shuang Li, Hongyuan Zha, Le Song
ICCV 2015 Deep Fried Convnets Zichao Yang, Marcin Moczulski, Misha Denil, Nando de Freitas, Alex Smola, Le Song, Ziyu Wang
NeurIPS 2015 Efficient Learning of Continuous-Time Hidden Markov Models for Disease Progression Yu-Ying Liu, Shuang Li, Fuxin Li, Le Song, James M. Rehg
UAI 2015 Learning Latent Variable Models by Improving Spectral Solutions with Exterior Point Method Amirreza Shaban, Mehrdad Farajtabar, Bo Xie, Le Song, Byron Boots
NeurIPS 2015 M-Statistic for Kernel Change-Point Detection Shuang Li, Yao Xie, Hanjun Dai, Le Song
NeurIPS 2015 Scale up Nonlinear Component Analysis with Doubly Stochastic Gradients Bo Xie, Yingyu Liang, Le Song
NeurIPS 2015 Time-Sensitive Recommendation from Recurrent User Activities Nan Du, Yichen Wang, Niao He, Jimeng Sun, Le Song
NeurIPS 2014 Active Learning and Best-Response Dynamics Maria-Florina F Balcan, Christopher Berlind, Avrim Blum, Emma Cohen, Kaushik Patnaik, Le Song
ICML 2014 Estimating Diffusion Network Structures: Recovery Conditions, Sample Complexity & Soft-Thresholding Algorithm Hadi Daneshmand, Manuel Gomez-Rodriguez, Le Song, Bernhard Schoelkopf
ICML 2014 Influence Function Learning in Information Diffusion Networks Nan Du, Yingyu Liang, Maria Balcan, Le Song
NeurIPS 2014 Learning Time-Varying Coverage Functions Nan Du, Yingyu Liang, Maria-Florina F Balcan, Le Song
ICML 2014 Least Squares Revisited: Scalable Approaches for Multi-Class Prediction Alekh Agarwal, Sham Kakade, Nikos Karampatziakis, Le Song, Gregory Valiant
ICML 2014 Nonparametric Estimation of Multi-View Latent Variable Models Le Song, Animashree Anandkumar, Bo Dai, Bo Xie
COLT 2014 Open Problem: Finding Good Cascade Sampling Processes for the Network Inference Problem Manuel Gomez-Rodriguez, Le Song, Bernhard Schölkopf
NeurIPS 2014 Scalable Kernel Methods via Doubly Stochastic Gradients Bo Dai, Bo Xie, Niao He, Yingyu Liang, Anant Raj, Maria-Florina F Balcan, Le Song
NeurIPS 2014 Shaping Social Activity by Incentivizing Users Mehrdad Farajtabar, Nan Du, Manuel Gomez Rodriguez, Isabel Valera, Hongyuan Zha, Le Song
ICML 2013 Hierarchical Tensor Decomposition of Latent Tree Graphical Models Le Song, Mariya Ishteva, Ankur Parikh, Eric Xing, Haesun Park
JMLR 2013 Kernel Bayes' Rule: Bayesian Inference with Positive Definite Kernels Kenji Fukumizu, Le Song, Arthur Gretton
AISTATS 2013 Learning Social Infectivity in Sparse Low-Rank Networks Using Multi-Dimensional Hawkes Processes Ke Zhou, Hongyuan Zha, Le Song
ICML 2013 Learning Triggering Kernels for Multi-Dimensional Hawkes Processes Ke Zhou, Hongyuan Zha, Le Song
NeurIPS 2013 Robust Low Rank Kernel Embeddings of Multivariate Distributions Le Song, Bo Dai
NeurIPS 2013 Scalable Influence Estimation in Continuous-Time Diffusion Networks Nan Du, Le Song, Manuel Gomez Rodriguez, Hongyuan Zha
AISTATS 2013 Uncover Topic-Sensitive Information Diffusion Networks Nan Du, Le Song, Hyenkyun Woo, Hongyuan Zha
ICML 2013 Unfolding Latent Tree Structures Using 4th Order Tensors Mariya Ishteva, Haesun Park, Le Song
UAI 2012 A Spectral Algorithm for Latent Junction Trees Ankur P. Parikh, Le Song, Mariya Ishteva, Gabi Teodoru, Eric P. Xing
JMLR 2012 Feature Selection via Dependence Maximization Le Song, Alex Smola, Arthur Gretton, Justin Bedo, Karsten Borgwardt
NeurIPS 2012 Learning Networks of Heterogeneous Influence Nan Du, Le Song, Ming Yuan, Alex J. Smola
ICML 2011 A Spectral Algorithm for Latent Tree Graphical Models Ankur P. Parikh, Le Song, Eric P. Xing
AISTATS 2011 Evolving Cluster Mixed-Membership Blockmodel for Time-Evolving Networks Qirong Ho, Le Song, Eric Xing
NeurIPS 2011 Kernel Bayes' Rule Kenji Fukumizu, Le Song, Arthur Gretton
AISTATS 2011 Kernel Belief Propagation Le Song, Arthur Gretton, Danny Bickson, Yucheng Low, Carlos Guestrin
NeurIPS 2011 Kernel Embeddings of Latent Tree Graphical Models Le Song, Eric P. Xing, Ankur P. Parikh
AISTATS 2011 Multiscale Community Blockmodel for Network Exploration Qirong Ho, Ankur Parikh, Le Song, Eric Xing
NeurIPS 2011 Spectral Methods for Learning Multivariate Latent Tree Structure Animashree Anandkumar, Kamalika Chaudhuri, Daniel J. Hsu, Sham M. Kakade, Le Song, Tong Zhang
ICML 2010 Hilbert Space Embeddings of Hidden Markov Models Le Song, Byron Boots, Sajid M. Siddiqi, Geoffrey J. Gordon, Alexander J. Smola
AISTATS 2010 Learning Nonlinear Dynamic Models from Non-Sequenced Data Tzu–Kuo Huang, Le Song, Jeff Schneider
AISTATS 2010 Nonparametric Tree Graphical Models Le Song, Arthur Gretton, Carlos Guestrin
ICML 2009 Dynamic Mixed Membership Blockmodel for Evolving Networks Wenjie Fu, Le Song, Eric P. Xing
ICML 2009 Hilbert Space Embeddings of Conditional Distributions with Applications to Dynamical Systems Le Song, Jonathan Huang, Alexander J. Smola, Kenji Fukumizu
AISTATS 2009 Relative Novelty Detection Alex Smola, Le Song, Choon Hui Teo
NeurIPS 2009 Sparsistent Learning of Varying-Coefficient Models with Structural Changes Mladen Kolar, Le Song, Eric P. Xing
NeurIPS 2009 Time-Varying Dynamic Bayesian Networks Le Song, Mladen Kolar, Eric P. Xing
NeurIPS 2008 Kernel Measures of Independence for Non-Iid Data Xinhua Zhang, Le Song, Arthur Gretton, Alex J. Smola
NeurIPS 2008 Kernelized Sorting Novi Quadrianto, Le Song, Alex J. Smola
ICML 2008 Tailoring Density Estimation via Reproducing Kernel Moment Matching Le Song, Xinhua Zhang, Alexander J. Smola, Arthur Gretton, Bernhard Schölkopf
ICML 2007 A Dependence Maximization View of Clustering Le Song, Alexander J. Smola, Arthur Gretton, Karsten M. Borgwardt
ALT 2007 A Hilbert Space Embedding for Distributions Alexander J. Smola, Arthur Gretton, Le Song, Bernhard Schölkopf
NeurIPS 2007 A Kernel Statistical Test of Independence Arthur Gretton, Kenji Fukumizu, Choon H. Teo, Le Song, Bernhard Schölkopf, Alex J. Smola
NeurIPS 2007 Colored Maximum Variance Unfolding Le Song, Arthur Gretton, Karsten Borgwardt, Alex J. Smola
ICML 2007 Supervised Feature Selection via Dependence Estimation Le Song, Alexander J. Smola, Arthur Gretton, Karsten M. Borgwardt, Justin Bedo
ICML 2006 Classifying EEG for Brain-Computer Interfaces: Learning Optimal Filters for Dynamical System Features Le Song, Julien Epps
NeurIPS 2005 Phase Synchrony Rate for the Recognition of Motor Imagery in Brain-Computer Interface Le Song, Evian Gordon, Elly Gysels