Sotiras, Aristeidis

11 publications

ICCV 2025 Cracking Instance Jigsaw Puzzles: An Alternative to Multiple Instance Learning for Whole Slide Image Analysis Xiwen Chen, Peijie Qiu, Wenhui Zhu, Hao Wang, Huayu Li, Xuanzhao Dong, Xiaotong Sun, Xiaobing Yu, Yalin Wang, Abolfazl Razi, Aristeidis Sotiras
ICML 2025 FIC-TSC: Learning Time Series Classification with Fisher Information Constraint Xiwen Chen, Wenhui Zhu, Peijie Qiu, Hao Wang, Huayu Li, Zihan Li, Yalin Wang, Aristeidis Sotiras, Abolfazl Razi
ICML 2025 How Effective Can Dropout Be in Multiple Instance Learning ? Wenhui Zhu, Peijie Qiu, Xiwen Chen, Zhangsihao Yang, Aristeidis Sotiras, Abolfazl Razi, Yalin Wang
AAAI 2025 Multimodal Variational Autoencoder: A Barycentric View Peijie Qiu, Wenhui Zhu, Sayantan Kumar, Xiwen Chen, Jin Yang, Xiaotong Sun, Abolfazl Razi, Yalin Wang, Aristeidis Sotiras
AAAI 2025 Sequence Complementor: Complementing Transformers for Time Series Forecasting with Learnable Sequences Xiwen Chen, Peijie Qiu, Wenhui Zhu, Huayu Li, Hao Wang, Aristeidis Sotiras, Yalin Wang, Abolfazl Razi
ECCV 2024 DGR-MIL: Exploring Diverse Global Representation in Multiple Instance Learning for Whole Slide Image Classification Wenhui Zhu, Xiwen Chen, Peijie Qiu, Aristeidis Sotiras, Abolfazl Razi, Yalin Wang
ICML 2024 TimeMIL: Advancing Multivariate Time Series Classification via a Time-Aware Multiple Instance Learning Xiwen Chen, Peijie Qiu, Wenhui Zhu, Huayu Li, Hao Wang, Aristeidis Sotiras, Yalin Wang, Abolfazl Razi
NeurIPSW 2023 Explaining Longitudinal Clinical Outcomes Using Domain-Knowledge Driven Intermediate Concepts Sayantan Kumar, Thomas Kannampallil, Aristeidis Sotiras, Philip Payne
NeurIPSW 2023 mmNormVAE: Normative Modeling on Multimodal Neuroimaging Data Using Variational Autoencoders Sayantan Kumar, Philip Payne, Aristeidis Sotiras
CVPRW 2014 Efficient and Automated Multimodal Satellite Data Registration Through MRFs and Linear Programming Konstantinos Karantzalos, Aristeidis Sotiras, Nikos Paragios
ICCV 2011 Efficient Parallel Message Computation for MAP Inference Stavros Alchatzidis, Aristeidis Sotiras, Nikos Paragios