Srikant, R

26 publications

AAAI 2025 Decentralized and Uncoordinated Learning of Stable Matchings: A Game-Theoretic Approach S. Rasoul Etesami, R. Srikant
ICLR 2025 Global Convergence of Policy Gradient in Average Reward MDPs Navdeep Kumar, Yashaswini Murthy, Itai Shufaro, Kfir Yehuda Levy, R. Srikant, Shie Mannor
ICML 2025 Reinforcement Learning with Segment Feedback Yihan Du, Anna Winnicki, Gal Dalal, Shie Mannor, R. Srikant
NeurIPS 2025 Scalable Policy-Based RL Algorithms for POMDPs Ameya Anjarlekar, S. Rasoul Etesami, R. Srikant
TMLR 2025 Spectral Clustering and Labeling for Crowdsourcing with Inherently Distinct Task Types Saptarshi Mandal, Seo Taek Kong, Dimitrios Katselis, R. Srikant
ICLR 2024 Cascading Reinforcement Learning Yihan Du, R. Srikant, Wei Chen
ICML 2024 Exploration-Driven Policy Optimization in RLHF: Theoretical Insights on Efficient Data Utilization Yihan Du, Anna Winnicki, Gal Dalal, Shie Mannor, R. Srikant
TMLR 2024 Finite-Time Analysis of Entropy-Regularized Neural Natural Actor-Critic Algorithm Semih Cayci, Niao He, R. Srikant
ICML 2023 Collaborative Multi-Agent Heterogeneous Multi-Armed Bandits Ronshee Chawla, Daniel Vial, Sanjay Shakkottai, R. Srikant
AISTATS 2023 Learning While Scheduling in Multi-Server Systems with Unknown Statistics: MaxWeight with Discounted UCB Zixian Yang, R. Srikant, Lei Ying
L4DC 2023 Modified Policy Iteration for Exponential Cost Risk Sensitive MDPs Yashaswini Murthy, Mehrdad Moharrami, R. Srikant
AISTATS 2023 On the Convergence of Policy Iteration-Based Reinforcement Learning with Monte Carlo Policy Evaluation Anna Winnicki, R. Srikant
NeurIPS 2023 Performance Bounds for Policy-Based Average Reward Reinforcement Learning Algorithms Yashaswini Murthy, Mehrdad Moharrami, R. Srikant
AISTATS 2022 Improved Algorithms for Misspecified Linear Markov Decision Processes Daniel Vial, Advait Parulekar, Sanjay Shakkottai, R Srikant
NeurIPS 2022 Minimax Regret for Cascading Bandits Daniel Vial, Sujay Sanghavi, Sanjay Shakkottai, R. Srikant
ICML 2022 Regret Bounds for Stochastic Shortest Path Problems with Linear Function Approximation Daniel Vial, Advait Parulekar, Sanjay Shakkottai, R Srikant
L4DC 2021 The Dynamics of Gradient Descent for Overparametrized Neural Networks Siddhartha Satpathi, R Srikant
AISTATS 2020 Budget-Constrained Bandits over General Cost and Reward Distributions Semih Cayci, Atilla Eryilmaz, R Srikant
NeurIPS 2020 The Mean-Squared Error of Double Q-Learning Wentao Weng, Harsh Gupta, Niao He, Lei Ying, R. Srikant
COLT 2019 Finite-Time Error Bounds for Linear Stochastic Approximation andTD Learning R. Srikant, Lei Ying
NeurIPS 2019 Finite-Time Performance Bounds and Adaptive Learning Rate Selection for Two Time-Scale Reinforcement Learning Harsh Gupta, R. Srikant, Lei Ying
NeurIPS 2018 Adding One Neuron Can Eliminate All Bad Local Minima Shiyu Liang, Ruoyu Sun, Jason Lee, R. Srikant
ICLR 2018 Enhancing the Reliability of Out-of-Distribution Image Detection in Neural Networks Shiyu Liang, Yixuan Li, R. Srikant
ICLR 2017 Why Deep Neural Networks for Function Approximation? Shiyu Liang, R. Srikant
NeurIPS 2015 Algorithms with Logarithmic or Sublinear Regret for Constrained Contextual Bandits Huasen Wu, R. Srikant, Xin Liu, Chong Jiang
MLJ 2014 Collaborative Filtering with Information-Rich and Information-Sparse Entities Kai Zhu, Rui Wu, Lei Ying, R. Srikant