Staerman, Guillaume

13 publications

AISTATS 2025 Signature Isolation Forest Marta Campi, Guillaume Staerman, Gareth W. Peters, Tomoko Masui
AISTATS 2025 UNHaP: Unmixing Noise from Hawkes Processes Virginie Loison, Guillaume Staerman, Thomas Moreau
TMLR 2024 A Pseudo-Metric Between Probability Distributions Based on Depth-Trimmed Regions Guillaume Staerman, Pavlo Mozharovskyi, Pierre Colombo, Stephan Clémençon, Florence d'Alché-Buc
ICMLW 2024 Unmixing Noise from Hawkes Process to Model Learned Physiological Events Guillaume Staerman, Virginie Loison, Thomas Moreau
AAAI 2024 Unsupervised Layer-Wise Score Aggregation for Textual OOD Detection Maxime Darrin, Guillaume Staerman, Eduardo Dadalto Câmara Gomes, Jackie C. K. Cheung, Pablo Piantanida, Pierre Colombo
TMLR 2023 A Halfspace-Mass Depth-Based Method for Adversarial Attack Detection Marine Picot, Federica Granese, Guillaume Staerman, Marco Romanelli, Francisco Messina, Pablo Piantanida, Pierre Colombo
ICML 2023 FaDIn: Fast Discretized Inference for Hawkes Processes with General Parametric Kernels Guillaume Staerman, Cédric Allain, Alexandre Gramfort, Thomas Moreau
ICML 2023 Hypothesis Transfer Learning with Surrogate Classification Losses: Generalization Bounds Through Algorithmic Stability Anass Aghbalou, Guillaume Staerman
NeurIPS 2022 Beyond Mahalanobis Distance for Textual OOD Detection Pierre Colombo, Eduardo Dadalto, Guillaume Staerman, Nathan Noiry, Pablo Piantanida
AISTATS 2021 When OT Meets MoM: Robust Estimation of Wasserstein Distance Guillaume Staerman, Pierre Laforgue, Pavlo Mozharovskyi, Florence d’Alché-Buc
ICML 2021 Generalization Bounds in the Presence of Outliers: A Median-of-Means Study Pierre Laforgue, Guillaume Staerman, Stephan Clémençon
AISTATS 2020 The Area of the Convex Hull of Sampled Curves: A Robust Functional Statistical Depth Measure Guillaume Staerman, Pavlo Mozharovskyi, Stéphan Clémen\con
ACML 2019 Functional Isolation Forest Guillaume Staerman, Pavlo Mozharovskyi, Stephan Clémençon, Florence d’Alché-Buc