Steeg, Greg Ver

44 publications

NeurIPS 2025 Exploring the Design Space of Diffusion Bridge Models Shaorong Zhang, Yuanbin Cheng, Greg Ver Steeg
CVPRW 2024 Comparative Analysis of Generalization and Harmonization Methods for 3D Brain fMRI Images: A Case Study on OpenBHB Dataset Soroosh Safari Loaliyan, Greg Ver Steeg
ICLR 2024 Interpretable Diffusion via Information Decomposition Xianghao Kong, Ollie Liu, Han Li, Dani Yogatama, Greg Ver Steeg
CVPR 2024 Interpretable Measures of Conceptual Similarity by Complexity-Constrained Descriptive Auto-Encoding Alessandro Achille, Greg Ver Steeg, Tian Yu Liu, Matthew Trager, Carson Klingenberg, Stefano Soatto
NeurIPSW 2024 Learning Morphisms with Gauss-Newton Approximation for Growing Networks Neal Gregory Lawton, Aram Galstyan, Greg Ver Steeg
NeurIPS 2024 Your Diffusion Model Is Secretly a Noise Classifier and Benefits from Contrastive Training Yunshu Wu, Yingtao Luo, Xianghao Kong, Evangelos E. Papalexakis, Greg Ver Steeg
ICLR 2023 Information-Theoretic Diffusion Xianghao Kong, Rob Brekelmans, Greg Ver Steeg
JAIR 2022 A Metric Space for Point Process Excitations Myrl G. Marmarelis, Greg Ver Steeg, Aram Galstyan
NeurIPSW 2022 Bounding the Effects of Continuous Treatments for Hidden Confounders Myrl Marmarelis, Greg Ver Steeg, Neda Jahanshad, Aram Galstyan
CVPR 2022 Failure Modes of Domain Generalization Algorithms Tigran Galstyan, Hrayr Harutyunyan, Hrant Khachatrian, Greg Ver Steeg, Aram Galstyan
NeurIPSW 2022 Federated Progressive Sparsification (Purge-Merge-Tune)+ Dimitris Stripelis, Umang Gupta, Greg Ver Steeg, Jose Luis Ambite
ICLR 2022 Improving Mutual Information Estimation with Annealed and Energy-Based Bounds Rob Brekelmans, Sicong Huang, Marzyeh Ghassemi, Greg Ver Steeg, Roger Baker Grosse, Alireza Makhzani
AAAI 2021 Controllable Guarantees for Fair Outcomes via Contrastive Information Estimation Umang Gupta, Aaron M. Ferber, Bistra Dilkina, Greg Ver Steeg
ICLRW 2021 Fast Graph Learning with Unique Optimal Solutions Sami Abu-El-Haija, Valentino Crespi, Greg Ver Steeg, Aram Galstyan
ICLR 2021 Graph Traversal with Tensor Functionals: A Meta-Algorithm for Scalable Learning Elan Sopher Markowitz, Keshav Balasubramanian, Mehrnoosh Mirtaheri, Sami Abu-El-Haija, Bryan Perozzi, Greg Ver Steeg, Aram Galstyan
NeurIPS 2021 Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling Greg Ver Steeg, Aram Galstyan
NeurIPS 2021 Implicit SVD for Graph Representation Learning Sami Abu-El-Haija, Hesham Mostafa, Marcel Nassar, Valentino Crespi, Greg Ver Steeg, Aram Galstyan
NeurIPS 2021 Information-Theoretic Generalization Bounds for Black-Box Learning Algorithms Hrayr Harutyunyan, Maxim Raginsky, Greg Ver Steeg, Aram Galstyan
ICML 2020 All in the Exponential Family: Bregman Duality in Thermodynamic Variational Inference Rob Brekelmans, Vaden Masrani, Frank Wood, Greg Ver Steeg, Aram Galstyan
NeurIPSW 2020 Annealed Importance Sampling with Q-Paths Rob Brekelmans, Vaden Masrani, Thang D Bui, Frank Wood, Aram Galstyan, Greg Ver Steeg, Frank Nielsen
ICML 2020 Improving Generalization by Controlling Label-Noise Information in Neural Network Weights Hrayr Harutyunyan, Kyle Reing, Greg Ver Steeg, Aram Galstyan
AAAI 2020 Invariant Representations Through Adversarial Forgetting Ayush Jaiswal, Daniel Moyer, Greg Ver Steeg, Wael AbdAlmageed, Premkumar Natarajan
NeurIPSW 2020 Likelihood Ratio Exponential Families Rob Brekelmans, Frank Nielsen, Alireza Makhzani, Aram Galstyan, Greg Ver Steeg
AAAI 2020 Modeling Dialogues with Hashcode Representations: A Nonparametric Approach Sahil Garg, Irina Rish, Guillermo A. Cecchi, Palash Goyal, Sarik Ghazarian, Shuyang Gao, Greg Ver Steeg, Aram Galstyan
AISTATS 2019 Auto-Encoding Total Correlation Explanation Shuyang Gao, Rob Brekelmans, Greg Ver Steeg, Aram Galstyan
NeurIPS 2019 Exact Rate-Distortion in Autoencoders via Echo Noise Rob Brekelmans, Daniel Moyer, Aram Galstyan, Greg Ver Steeg
NeurIPS 2019 Fast Structure Learning with Modular Regularization Greg Ver Steeg, Hrayr Harutyunyan, Daniel Moyer, Aram Galstyan
AAAI 2019 Kernelized Hashcode Representations for Relation Extraction Sahil Garg, Aram Galstyan, Greg Ver Steeg, Irina Rish, Guillermo A. Cecchi, Shuyang Gao
ICML 2019 MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr Harutyunyan, Greg Ver Steeg, Aram Galstyan
UAI 2018 A Forest Mixture Bound for Block-Free Parallel Inference Neal Lawton, Greg Ver Steeg, Aram Galstyan
NeurIPS 2018 Invariant Representations Without Adversarial Training Daniel Moyer, Shuyang Gao, Rob Brekelmans, Aram Galstyan, Greg Ver Steeg
IJCAI 2017 Sifting Common Information from Many Variables Greg Ver Steeg, Shuyang Gao, Kyle Reing, Aram Galstyan
IJCAI 2017 Unsupervised Learning via Total Correlation Explanation Greg Ver Steeg
ICML 2016 The Information Sieve Greg Ver Steeg, Aram Galstyan
NeurIPS 2016 Variational Information Maximization for Feature Selection Shuyang Gao, Greg Ver Steeg, Aram Galstyan
AISTATS 2015 Efficient Estimation of Mutual Information for Strongly Dependent Variables Shuyang Gao, Greg Ver Steeg, Aram Galstyan
UAI 2015 Estimating Mutual Information by Local Gaussian Approximation Shuyang Gao, Greg Ver Steeg, Aram Galstyan
AISTATS 2015 Maximally Informative Hierarchical Representations of High-Dimensional Data Greg Ver Steeg, Aram Galstyan
NeurIPS 2014 Discovering Structure in High-Dimensional Data Through Correlation Explanation Greg Ver Steeg, Aram Galstyan
AAAI 2014 Where and Why Users "Check In" Yoon-Sik Cho, Greg Ver Steeg, Aram Galstyan
AISTATS 2013 Statistical Tests for Contagion in Observational Social Network Studies Greg Ver Steeg, Aram Galstyan
UAI 2011 A Sequence of Relaxation Constraining Hidden Variable Models Greg Ver Steeg, Aram Galstyan
AAAI 2011 Co-Evolution of Selection and Influence in Social Networks Yoon-Sik Cho, Greg Ver Steeg, Aram Galstyan
UAI 2011 Statistical Mechanics of Semi-Supervised Clustering in Sparse Graphs (Abstract) Greg Ver Steeg, Aram Galstyan, Armen E. Allahverdyan