ML Anthology
Authors
Search
About
Steeg, Greg Ver
44 publications
NeurIPS
2025
Exploring the Design Space of Diffusion Bridge Models
Shaorong Zhang
,
Yuanbin Cheng
,
Greg Ver Steeg
CVPRW
2024
Comparative Analysis of Generalization and Harmonization Methods for 3D Brain fMRI Images: A Case Study on OpenBHB Dataset
Soroosh Safari Loaliyan
,
Greg Ver Steeg
ICLR
2024
Interpretable Diffusion via Information Decomposition
Xianghao Kong
,
Ollie Liu
,
Han Li
,
Dani Yogatama
,
Greg Ver Steeg
CVPR
2024
Interpretable Measures of Conceptual Similarity by Complexity-Constrained Descriptive Auto-Encoding
Alessandro Achille
,
Greg Ver Steeg
,
Tian Yu Liu
,
Matthew Trager
,
Carson Klingenberg
,
Stefano Soatto
NeurIPSW
2024
Learning Morphisms with Gauss-Newton Approximation for Growing Networks
Neal Gregory Lawton
,
Aram Galstyan
,
Greg Ver Steeg
NeurIPS
2024
Your Diffusion Model Is Secretly a Noise Classifier and Benefits from Contrastive Training
Yunshu Wu
,
Yingtao Luo
,
Xianghao Kong
,
Evangelos E. Papalexakis
,
Greg Ver Steeg
ICLR
2023
Information-Theoretic Diffusion
Xianghao Kong
,
Rob Brekelmans
,
Greg Ver Steeg
JAIR
2022
A Metric Space for Point Process Excitations
Myrl G. Marmarelis
,
Greg Ver Steeg
,
Aram Galstyan
NeurIPSW
2022
Bounding the Effects of Continuous Treatments for Hidden Confounders
Myrl Marmarelis
,
Greg Ver Steeg
,
Neda Jahanshad
,
Aram Galstyan
CVPR
2022
Failure Modes of Domain Generalization Algorithms
Tigran Galstyan
,
Hrayr Harutyunyan
,
Hrant Khachatrian
,
Greg Ver Steeg
,
Aram Galstyan
NeurIPSW
2022
Federated Progressive Sparsification (Purge-Merge-Tune)+
Dimitris Stripelis
,
Umang Gupta
,
Greg Ver Steeg
,
Jose Luis Ambite
ICLR
2022
Improving Mutual Information Estimation with Annealed and Energy-Based Bounds
Rob Brekelmans
,
Sicong Huang
,
Marzyeh Ghassemi
,
Greg Ver Steeg
,
Roger Baker Grosse
,
Alireza Makhzani
AAAI
2021
Controllable Guarantees for Fair Outcomes via Contrastive Information Estimation
Umang Gupta
,
Aaron M. Ferber
,
Bistra Dilkina
,
Greg Ver Steeg
ICLRW
2021
Fast Graph Learning with Unique Optimal Solutions
Sami Abu-El-Haija
,
Valentino Crespi
,
Greg Ver Steeg
,
Aram Galstyan
ICLR
2021
Graph Traversal with Tensor Functionals: A Meta-Algorithm for Scalable Learning
Elan Sopher Markowitz
,
Keshav Balasubramanian
,
Mehrnoosh Mirtaheri
,
Sami Abu-El-Haija
,
Bryan Perozzi
,
Greg Ver Steeg
,
Aram Galstyan
NeurIPS
2021
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling
Greg Ver Steeg
,
Aram Galstyan
NeurIPS
2021
Implicit SVD for Graph Representation Learning
Sami Abu-El-Haija
,
Hesham Mostafa
,
Marcel Nassar
,
Valentino Crespi
,
Greg Ver Steeg
,
Aram Galstyan
NeurIPS
2021
Information-Theoretic Generalization Bounds for Black-Box Learning Algorithms
Hrayr Harutyunyan
,
Maxim Raginsky
,
Greg Ver Steeg
,
Aram Galstyan
ICML
2020
All in the Exponential Family: Bregman Duality in Thermodynamic Variational Inference
Rob Brekelmans
,
Vaden Masrani
,
Frank Wood
,
Greg Ver Steeg
,
Aram Galstyan
NeurIPSW
2020
Annealed Importance Sampling with Q-Paths
Rob Brekelmans
,
Vaden Masrani
,
Thang D Bui
,
Frank Wood
,
Aram Galstyan
,
Greg Ver Steeg
,
Frank Nielsen
ICML
2020
Improving Generalization by Controlling Label-Noise Information in Neural Network Weights
Hrayr Harutyunyan
,
Kyle Reing
,
Greg Ver Steeg
,
Aram Galstyan
AAAI
2020
Invariant Representations Through Adversarial Forgetting
Ayush Jaiswal
,
Daniel Moyer
,
Greg Ver Steeg
,
Wael AbdAlmageed
,
Premkumar Natarajan
NeurIPSW
2020
Likelihood Ratio Exponential Families
Rob Brekelmans
,
Frank Nielsen
,
Alireza Makhzani
,
Aram Galstyan
,
Greg Ver Steeg
AAAI
2020
Modeling Dialogues with Hashcode Representations: A Nonparametric Approach
Sahil Garg
,
Irina Rish
,
Guillermo A. Cecchi
,
Palash Goyal
,
Sarik Ghazarian
,
Shuyang Gao
,
Greg Ver Steeg
,
Aram Galstyan
AISTATS
2019
Auto-Encoding Total Correlation Explanation
Shuyang Gao
,
Rob Brekelmans
,
Greg Ver Steeg
,
Aram Galstyan
NeurIPS
2019
Exact Rate-Distortion in Autoencoders via Echo Noise
Rob Brekelmans
,
Daniel Moyer
,
Aram Galstyan
,
Greg Ver Steeg
NeurIPS
2019
Fast Structure Learning with Modular Regularization
Greg Ver Steeg
,
Hrayr Harutyunyan
,
Daniel Moyer
,
Aram Galstyan
AAAI
2019
Kernelized Hashcode Representations for Relation Extraction
Sahil Garg
,
Aram Galstyan
,
Greg Ver Steeg
,
Irina Rish
,
Guillermo A. Cecchi
,
Shuyang Gao
ICML
2019
MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing
Sami Abu-El-Haija
,
Bryan Perozzi
,
Amol Kapoor
,
Nazanin Alipourfard
,
Kristina Lerman
,
Hrayr Harutyunyan
,
Greg Ver Steeg
,
Aram Galstyan
UAI
2018
A Forest Mixture Bound for Block-Free Parallel Inference
Neal Lawton
,
Greg Ver Steeg
,
Aram Galstyan
NeurIPS
2018
Invariant Representations Without Adversarial Training
Daniel Moyer
,
Shuyang Gao
,
Rob Brekelmans
,
Aram Galstyan
,
Greg Ver Steeg
IJCAI
2017
Sifting Common Information from Many Variables
Greg Ver Steeg
,
Shuyang Gao
,
Kyle Reing
,
Aram Galstyan
IJCAI
2017
Unsupervised Learning via Total Correlation Explanation
Greg Ver Steeg
ICML
2016
The Information Sieve
Greg Ver Steeg
,
Aram Galstyan
NeurIPS
2016
Variational Information Maximization for Feature Selection
Shuyang Gao
,
Greg Ver Steeg
,
Aram Galstyan
AISTATS
2015
Efficient Estimation of Mutual Information for Strongly Dependent Variables
Shuyang Gao
,
Greg Ver Steeg
,
Aram Galstyan
UAI
2015
Estimating Mutual Information by Local Gaussian Approximation
Shuyang Gao
,
Greg Ver Steeg
,
Aram Galstyan
AISTATS
2015
Maximally Informative Hierarchical Representations of High-Dimensional Data
Greg Ver Steeg
,
Aram Galstyan
NeurIPS
2014
Discovering Structure in High-Dimensional Data Through Correlation Explanation
Greg Ver Steeg
,
Aram Galstyan
AAAI
2014
Where and Why Users "Check In"
Yoon-Sik Cho
,
Greg Ver Steeg
,
Aram Galstyan
AISTATS
2013
Statistical Tests for Contagion in Observational Social Network Studies
Greg Ver Steeg
,
Aram Galstyan
UAI
2011
A Sequence of Relaxation Constraining Hidden Variable Models
Greg Ver Steeg
,
Aram Galstyan
AAAI
2011
Co-Evolution of Selection and Influence in Social Networks
Yoon-Sik Cho
,
Greg Ver Steeg
,
Aram Galstyan
UAI
2011
Statistical Mechanics of Semi-Supervised Clustering in Sparse Graphs (Abstract)
Greg Ver Steeg
,
Aram Galstyan
,
Armen E. Allahverdyan