ML Anthology
Authors
Search
About
Steinwart, Ingo
40 publications
MLJ
2025
Empirical Risk Minimization in the Interpolating Regime with Application to Neural Network Learning
Nicole Mücke
,
Ingo Steinwart
NeurIPS
2024
Better by Default: Strong Pre-Tuned MLPs and Boosted Trees on Tabular Data
David Holzmüller
,
Léo Grinsztajn
,
Ingo Steinwart
JMLR
2023
A Framework and Benchmark for Deep Batch Active Learning for Regression
David Holzmüller
,
Viktor Zaverkin
,
Johannes Kästner
,
Ingo Steinwart
JMLR
2023
Adaptive Clustering Using Kernel Density Estimators
Ingo Steinwart
,
Bharath K. Sriperumbudur
,
Philipp Thomann
NeurIPS
2023
Mind the Spikes: Benign Overfitting of Kernels and Neural Networks in Fixed Dimension
Moritz Haas
,
David Holzmüller
,
Ulrike V. Luxburg
,
Ingo Steinwart
JMLR
2022
Improved Classification Rates for Localized SVMs
Ingrid Blaschzyk
,
Ingo Steinwart
ICLR
2022
SOSP: Efficiently Capturing Global Correlations by Second-Order Structured Pruning
Manuel Nonnenmacher
,
Thomas Pfeil
,
Ingo Steinwart
,
David Reeb
JMLR
2022
Training Two-Layer ReLU Networks with Gradient Descent Is Inconsistent
David Holzmüller
,
Ingo Steinwart
ICML
2022
Utilizing Expert Features for Contrastive Learning of Time-Series Representations
Manuel T Nonnenmacher
,
Lukas Oldenburg
,
Ingo Steinwart
,
David Reeb
ECML-PKDD
2021
Which Minimizer Does My Neural Network Converge to?
Manuel Nonnenmacher
,
David Reeb
,
Ingo Steinwart
JMLR
2020
Sobolev Norm Learning Rates for Regularized Least-Squares Algorithms
Simon Fischer
,
Ingo Steinwart
MLJ
2019
Learning Rates for Kernel-Based Expectile Regression
Muhammad Farooq
,
Ingo Steinwart
JMLR
2018
Kernel Density Estimation for Dynamical Systems
Hanyuan Hang
,
Ingo Steinwart
,
Yunlong Feng
,
Johan A.K. Suykens
AISTATS
2017
Spatial Decompositions for Large Scale SVMs
Philipp Thomann
,
Ingrid Blaschzyk
,
Mona Meister
,
Ingo Steinwart
JMLR
2016
Optimal Learning Rates for Localized SVMs
Mona Meister
,
Ingo Steinwart
JMLR
2015
Towards an Axiomatic Approach to Hierarchical Clustering of Measures
Philipp Thomann
,
Ingo Steinwart
,
Nico Schmid
COLT
2014
Elicitation and Identification of Properties
Ingo Steinwart
,
Chloé Pasin
,
Robert C. Williamson
,
Siyu Zhang
COLT
2013
COLT 2013 - The 26th Annual Conference on Learning Theory, June 12-14, 2013, Princeton University, NJ, USA
Shai Shalev-Shwartz
,
Ingo Steinwart
AISTATS
2012
Consistency and Rates for Clustering with DBSCAN
Bharath Sriperumbudur
,
Ingo Steinwart
COLT
2011
Adaptive Density Level Set Clustering
Ingo Steinwart
NeurIPS
2011
Optimal Learning Rates for Least Squares SVMs Using Gaussian Kernels
Mona Eberts
,
Ingo Steinwart
JMLR
2011
Training SVMs Without Offset
Ingo Steinwart
,
Don Hush
,
Clint Scovel
NeurIPS
2010
Universal Kernels on Non-Standard Input Spaces
Andreas Christmann
,
Ingo Steinwart
NeurIPS
2009
Fast Learning from Non-I.i.d. Observations
Ingo Steinwart
,
Andreas Christmann
COLT
2009
Optimal Rates for Regularized Least Squares Regression
Ingo Steinwart
,
Don R. Hush
,
Clint Scovel
NeurIPS
2008
Sparsity of SVMs That Use the Epsilon-Insensitive Loss
Ingo Steinwart
,
Andreas Christmann
COLT
2007
Gaps in Support Vector Optimization
Nikolas List
,
Don R. Hush
,
Clint Scovel
,
Ingo Steinwart
NeurIPS
2007
How SVMs Can Estimate Quantiles and the Median
Andreas Christmann
,
Ingo Steinwart
MLJ
2007
Stability of Unstable Learning Algorithms
Don R. Hush
,
Clint Scovel
,
Ingo Steinwart
NeurIPS
2006
An Oracle Inequality for Clipped Regularized Risk Minimizers
Ingo Steinwart
,
Don Hush
,
Clint Scovel
COLT
2006
Function Classes That Approximate the Bayes Risk
Ingo Steinwart
,
Don R. Hush
,
Clint Scovel
JMLR
2006
QP Algorithms with Guaranteed Accuracy and Run Time for Support Vector Machines
Don Hush
,
Patrick Kelly
,
Clint Scovel
,
Ingo Steinwart
JMLR
2005
A Classification Framework for Anomaly Detection
Ingo Steinwart
,
Don Hush
,
Clint Scovel
COLT
2005
Fast Rates for Support Vector Machines
Ingo Steinwart
,
Clint Scovel
NeurIPS
2004
Density Level Detection Is Classification
Ingo Steinwart
,
Don Hush
,
Clint Scovel
NeurIPS
2004
Fast Rates to Bayes for Kernel Machines
Ingo Steinwart
,
Clint Scovel
JMLR
2004
On Robustness Properties of Convex Risk Minimization Methods for Pattern Recognition
Andreas Christmann
,
Ingo Steinwart
JMLR
2003
Sparseness of Support Vector Machines
Ingo Steinwart
NeurIPS
2003
Sparseness of Support Vector Machines---Some Asymptotically Sharp Bounds
Ingo Steinwart
JMLR
2001
On the Influence of the Kernel on the Consistency of Support Vector Machines (Kernel Machines Section)
Ingo Steinwart