Su, Weijie

30 publications

ICML 2025 CoMemo: LVLMs Need Image Context with Image Memory Shi Liu, Weijie Su, Xizhou Zhu, Wenhai Wang, Jifeng Dai
NeurIPS 2025 NaViL: Rethinking Scaling Properties of Native Multimodal Large Language Models Under Data Constraints Changyao Tian, Hao Li, Gen Luo, Xizhou Zhu, Weijie Su, Hanming Deng, Jinguo Zhu, Jie Shao, Ziran Zhu, Yunpeng Liu, Lewei Lu, Wenhai Wang, Hongsheng Li, Jifeng Dai
CVPR 2025 PVC: Progressive Visual Token Compression for Unified Image and Video Processing in Large Vision-Language Models Chenyu Yang, Xuan Dong, Xizhou Zhu, Weijie Su, Jiahao Wang, Hao Tian, Zhe Chen, Wenhai Wang, Lewei Lu, Jifeng Dai
COLT 2024 Bridging the Gap: Rademacher Complexity in Robust and Standard Generalization Jiancong Xiao, Ruoyu Sun, Qi Long, Weijie Su
AAAI 2024 Eliciting Honest Information from Authors Using Sequential Review Yichi Zhang, Grant Schoenebeck, Weijie Su
CVPR 2024 InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong Zhang, Xizhou Zhu, Lewei Lu, Bin Li, Ping Luo, Tong Lu, Yu Qiao, Jifeng Dai
NeurIPS 2024 Vision Model Pre-Training on Interleaved Image-Text Data via Latent Compression Learning Chenyu Yang, Xizhou Zhu, Jinguo Zhu, Weijie Su, Junjie Wang, Xuan Dong, Wenhai Wang, Lewei Lu, Bin Li, Jie Zhou, Yu Qiao, Jifeng Dai
NeurIPS 2023 DP-HyPO: An Adaptive Private Framework for Hyperparameter Optimization Hua Wang, Sheng Gao, Huanyu Zhang, Weijie Su, Milan Shen
JMLR 2023 On Learning Rates and Schrödinger Operators Bin Shi, Weijie Su, Michael I. Jordan
CVPR 2023 Siamese Image Modeling for Self-Supervised Vision Representation Learning Chenxin Tao, Xizhou Zhu, Weijie Su, Gao Huang, Bin Li, Jie Zhou, Yu Qiao, Xiaogang Wang, Jifeng Dai
CVPR 2023 Towards All-in-One Pre-Training via Maximizing Multi-Modal Mutual Information Weijie Su, Xizhou Zhu, Chenxin Tao, Lewei Lu, Bin Li, Gao Huang, Yu Qiao, Xiaogang Wang, Jie Zhou, Jifeng Dai
NeurIPS 2023 Unified Enhancement of Privacy Bounds for Mixture Mechanisms via $f$-Differential Privacy Chendi Wang, Buxin Su, Jiayuan Ye, Reza Shokri, Weijie Su
ICML 2022 ROCK: Causal Inference Principles for Reasoning About Commonsense Causality Jiayao Zhang, Hongming Zhang, Weijie Su, Dan Roth
NeurIPS 2022 The Alignment Property of SGD Noise and How It Helps Select Flat Minima: A Stability Analysis Lei Wu, Mingze Wang, Weijie Su
AISTATS 2021 Federated F-Differential Privacy Qinqing Zheng, Shuxiao Chen, Qi Long, Weijie Su
NeurIPS 2021 A Central Limit Theorem for Differentially Private Query Answering Jinshuo Dong, Weijie Su, Linjun Zhang
ICLR 2021 Deformable DETR: Deformable Transformers for End-to-End Object Detection Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai
NeurIPS 2021 Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations Jiayao Zhang, Hua Wang, Weijie Su
ICML 2021 Oneshot Differentially Private Top-K Selection Gang Qiao, Weijie Su, Li Zhang
ICML 2021 Toward Better Generalization Bounds with Locally Elastic Stability Zhun Deng, Hangfeng He, Weijie Su
NeurIPS 2021 You Are the Best Reviewer of Your Own Papers: An Owner-Assisted Scoring Mechanism Weijie Su
NeurIPS 2020 Label-Aware Neural Tangent Kernel: Toward Better Generalization and Local Elasticity Shuxiao Chen, Hangfeng He, Weijie Su
ICML 2020 Sharp Composition Bounds for Gaussian Differential Privacy via Edgeworth Expansion Qinqing Zheng, Jinshuo Dong, Qi Long, Weijie Su
NeurIPS 2020 The Complete Lasso Tradeoff Diagram Hua Wang, Yachong Yang, Zhiqi Bu, Weijie Su
ICML 2020 Towards Understanding the Dynamics of the First-Order Adversaries Zhun Deng, Hangfeng He, Jiaoyang Huang, Weijie Su
ICLR 2020 VL-BERT: Pre-Training of Generic Visual-Linguistic Representations Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu Wei, Jifeng Dai
NeurIPS 2019 Acceleration via Symplectic Discretization of High-Resolution Differential Equations Bin Shi, Simon S Du, Weijie Su, Michael I Jordan
NeurIPS 2019 Algorithmic Analysis and Statistical Estimation of SLOPE via Approximate Message Passing Zhiqi Bu, Jason Klusowski, Cynthia Rush, Weijie Su
JMLR 2016 A Differential Equation for Modeling Nesterov's Accelerated Gradient Method: Theory and Insights Weijie Su, Stephen Boyd, Emmanuel J. Candès
NeurIPS 2014 A Differential Equation for Modeling Nesterov’s Accelerated Gradient Method: Theory and Insights Weijie Su, Stephen Boyd, Emmanuel Candes