Sun, Xinwei

27 publications

AISTATS 2025 A Differential Inclusion Approach for Learning Heterogeneous Sparsity in Neuroimaging Analysis Wenjing Han, Yueming Wu, Xinwei Sun, Lingjing Hu, Yizhou Wang
MLJ 2025 A New Formulation of Lipschitz Constrained with Functional Gradient Learning for GANs Chang Wan, Ke Fan, Xinwei Sun, Yanwei Fu, Minglu Li, Yunliang Jiang, Zhonglong Zheng
ICLR 2025 Adaptive Pruning of Pretrained Transformer via Differential Inclusions Yizhuo Ding, Ke Fan, Yikai Wang, Xinwei Sun, Yanwei Fu
ICML 2025 Bayesian Active Learning for Bivariate Causal Discovery Yuxuan Wang, Mingzhou Liu, Xinwei Sun, Wei Wang, Yizhou Wang
ICML 2025 Bivariate Causal Discovery with Proxy Variables: Integral Solving and Beyond Yong Wu, Yanwei Fu, Shouyan Wang, Xinwei Sun
ICLR 2025 Learning Causal Alignment for Reliable Disease Diagnosis Mingzhou Liu, Ching-Wen Lee, Xinwei Sun, Xueqing Yu, Yu Qiao, Yizhou Wang
NeurIPS 2025 Towards Reliable and Holistic Visual In-Context Learning Prompt Selection Wenxiao Wu, Jing-Hao Xue, Chengming Xu, Chen Liu, Xinwei Sun, Changxin Gao, Nong Sang, Yanwei Fu
ICML 2024 Causal Discovery via Conditional Independence Testing with Proxy Variables Mingzhou Liu, Xinwei Sun, Yu Qiao, Yizhou Wang
ICLR 2024 Doubly Robust Proximal Causal Learning for Continuous Treatments Yong Wu, Yanwei Fu, Shouyan Wang, Xinwei Sun
UAI 2024 Exploring High-Dimensional Search Space via Voronoi Graph Traversing Aidong Zhao, Xuyang Zhao, Tianchen Gu, Zhaori Bi, Xinwei Sun, Changhao Yan, Fan Yang, Dian Zhou, Xuan Zeng
TMLR 2024 LEA: Learning Latent Embedding Alignment Model for fMRI Decoding and Encoding Xuelin Qian, Yikai Wang, Xinwei Sun, Yanwei Fu, Xiangyang Xue, Jianfeng Feng
AISTATS 2023 A New Causal Decomposition Paradigm Towards Health Equity Xinwei Sun, Xiangyu Zheng, Jim Weinstein
NeurIPS 2023 Causal Discovery from Subsampled Time Series with Proxy Variables Mingzhou Liu, Xinwei Sun, Lingjing Hu, Yizhou Wang
ICLR 2023 Learning Domain-Agnostic Representation for Disease Diagnosis Churan Wang, Jing Li, Xinwei Sun, Fandong Zhang, Yizhou Yu, Yizhou Wang
ICLR 2023 Out-of-Distribution Representation Learning for Time Series Classification Wang Lu, Jindong Wang, Xinwei Sun, Yiqiang Chen, Xing Xie
ICML 2023 Which Invariance Should We Transfer? a Causal Minimax Learning Approach Mingzhou Liu, Xiangyu Zheng, Xinwei Sun, Fang Fang, Yizhou Wang
CVPR 2022 Scalable Penalized Regression for Noise Detection in Learning with Noisy Labels Yikai Wang, Xinwei Sun, Yanwei Fu
CVPR 2021 Causal Hidden Markov Model for Time Series Disease Forecasting Jing Li, Botong Wu, Xinwei Sun, Yizhou Wang
CVPR 2021 Forecasting Irreversible Disease via Progression Learning Botong Wu, Sijie Ren, Jing Li, Xinwei Sun, Shi-Ming Li, Yizhou Wang
NeurIPS 2021 Learning Causal Semantic Representation for Out-of-Distribution Prediction Chang Liu, Xinwei Sun, Jindong Wang, Haoyue Tang, Tao Li, Tao Qin, Wei Chen, Tie-Yan Liu
NeurIPS 2021 Recovering Latent Causal Factor for Generalization to Distributional Shifts Xinwei Sun, Botong Wu, Xiangyu Zheng, Chang Liu, Wei Chen, Tao Qin, Tie-Yan Liu
ICML 2020 DessiLBI: Exploring Structural Sparsity of Deep Networks via Differential Inclusion Paths Yanwei Fu, Chen Liu, Donghao Li, Xinwei Sun, Jinshan Zeng, Yuan Yao
ECCV 2020 TCGM: An Information-Theoretic Framework for Semi-Supervised Multi-Modality Learning Xinwei Sun, Yilun Xu, Peng Cao, Yuqing Kong, Lingjing Hu, Shanghang Zhang, Yizhou Wang
WACV 2019 Zero-Shot Learning via Recurrent Knowledge Transfer Bo Zhao, Xinwei Sun, Xiaopeng Hong, Yuan Yao, Yizhou Wang
NeurIPS 2019 iSplit LBI: Individualized Partial Ranking with Ties via Split LBI Qianqian Xu, Xinwei Sun, Zhiyong Yang, Xiaochun Cao, Qingming Huang, Yuan Yao
ICML 2018 MSplit LBI: Realizing Feature Selection and Dense Estimation Simultaneously in Few-Shot and Zero-Shot Learning Bo Zhao, Xinwei Sun, Yanwei Fu, Yuan Yao, Yizhou Wang
NeurIPS 2016 Split LBI: An Iterative Regularization Path with Structural Sparsity Chendi Huang, Xinwei Sun, Jiechao Xiong, Yuan Yao