ML Anthology
Authors
Search
About
Swaminathan, Adith
27 publications
NeurIPS
2025
Lost in Transmission: When and Why LLMs Fail to Reason Globally
Tobias Schnabel
,
Kiran Tomlinson
,
Adith Swaminathan
,
Jennifer Neville
NeurIPS
2024
How to Solve Contextual Goal-Oriented Problems with Offline Datasets?
Ying Fan
,
Jingling Li
,
Adith Swaminathan
,
Aditya Modi
,
Ching-An Cheng
ICLRW
2024
LLF-Bench: Benchmark for Interactive Learning from Language Feedback
Ching-An Cheng
,
Andrey Kolobov
,
Dipendra Misra
,
Allen Nie
,
Adith Swaminathan
NeurIPSW
2024
Measuring Steerability in Large Language Models
Trenton Chang
,
Jenna Wiens
,
Tobias Schnabel
,
Adith Swaminathan
UAI
2024
On Overcoming Miscalibrated Conversational Priors in LLM-Based ChatBots
Christine Herlihy
,
Jennifer Neville
,
Tobias Schnabel
,
Adith Swaminathan
ICMLW
2024
Trace Is the New AutoDiff — Unlocking Efficient Optimization of Computational Workflows
Ching-An Cheng
,
Allen Nie
,
Adith Swaminathan
NeurIPS
2024
Trace Is the Next AutoDiff: Generative Optimization with Rich Feedback, Execution Traces, and LLMs
Ching-An Cheng
,
Allen Nie
,
Adith Swaminathan
ICML
2023
Hindsight Learning for MDPs with Exogenous Inputs
Sean R. Sinclair
,
Felipe Vieira Frujeri
,
Ching-An Cheng
,
Luke Marshall
,
Hugo De Oliveira Barbalho
,
Jingling Li
,
Jennifer Neville
,
Ishai Menache
,
Adith Swaminathan
NeurIPSW
2023
Importance of Directional Feedback for LLM-Based Optimizers
Allen Nie
,
Ching-An Cheng
,
Andrey Kolobov
,
Adith Swaminathan
NeurIPSW
2023
Simple Data Sharing for Multi-Tasked Goal-Oriented Problems
Ying Fan
,
Jingling Li
,
Adith Swaminathan
,
Aditya Modi
,
Ching-An Cheng
NeurIPSW
2023
Simple Data Sharing for Multi-Tasked Goal-Oriented Problems
Ying Fan
,
Jingling Li
,
Adith Swaminathan
,
Aditya Modi
,
Ching-An Cheng
ICMLW
2023
Towards Modular Machine Learning Pipelines
Aditya Modi
,
Jivat Neet Kaur
,
Maggie Makar
,
Pavan Mallapragada
,
Amit Sharma
,
Emre Kiciman
,
Adith Swaminathan
NeurIPS
2021
Heuristic-Guided Reinforcement Learning
Ching-An Cheng
,
Andrey Kolobov
,
Adith Swaminathan
ICML
2020
Learning Calibratable Policies Using Programmatic Style-Consistency
Eric Zhan
,
Albert Tseng
,
Yisong Yue
,
Adith Swaminathan
,
Matthew Hausknecht
AAAI
2020
Metareasoning in Modular Software Systems: On-the-Fly Configuration Using Reinforcement Learning with Rich Contextual Representations
Aditya Modi
,
Debadeepta Dey
,
Alekh Agarwal
,
Adith Swaminathan
,
Besmira Nushi
,
Sean Andrist
,
Eric Horvitz
NeurIPS
2020
Provably Good Batch Off-Policy Reinforcement Learning Without Great Exploration
Yao Liu
,
Adith Swaminathan
,
Alekh Agarwal
,
Emma Brunskill
ICML
2020
Working Memory Graphs
Ricky Loynd
,
Roland Fernandez
,
Asli Celikyilmaz
,
Adith Swaminathan
,
Matthew Hausknecht
AAAI
2019
A Distillation Approach to Data Efficient Individual Treatment Effect Estimation
Maggie Makar
,
Adith Swaminathan
,
Emre Kiciman
ICMLW
2019
Off-Policy Policy Gradient with State Distribution Correction
Yao Liu
,
Adith Swaminathan
,
Alekh Agarwal
,
Emma Brunskill
UAI
2019
Off-Policy Policy Gradient with Stationary Distribution Correction
Yao Liu
,
Adith Swaminathan
,
Alekh Agarwal
,
Emma Brunskill
ICLR
2018
Deep Learning with Logged Bandit Feedback
Thorsten Joachims
,
Adith Swaminathan
,
Maarten de Rijke
IJCAI
2018
Unbiased Learning-to-Rank with Biased Feedback
Thorsten Joachims
,
Adith Swaminathan
,
Tobias Schnabel
NeurIPS
2017
Off-Policy Evaluation for Slate Recommendation
Adith Swaminathan
,
Akshay Krishnamurthy
,
Alekh Agarwal
,
Miro Dudik
,
John Langford
,
Damien Jose
,
Imed Zitouni
ICML
2016
Recommendations as Treatments: Debiasing Learning and Evaluation
Tobias Schnabel
,
Adith Swaminathan
,
Ashudeep Singh
,
Navin Chandak
,
Thorsten Joachims
JMLR
2015
Batch Learning from Logged Bandit Feedback Through Counterfactual Risk Minimization
Adith Swaminathan
,
Thorsten Joachims
ICML
2015
Counterfactual Risk Minimization: Learning from Logged Bandit Feedback
Adith Swaminathan
,
Thorsten Joachims
NeurIPS
2015
The Self-Normalized Estimator for Counterfactual Learning
Adith Swaminathan
,
Thorsten Joachims