ML Anthology
Authors
Search
About
Szabo, Zoltan
27 publications
AISTATS
2025
Nyström Kernel Stein Discrepancy
Florian Kalinke
,
Zoltán Szabó
,
Bharath Sriperumbudur
NeurIPS
2024
The Minimax Rate of HSIC Estimation for Translation-Invariant Kernels
Florian Kalinke
,
Zoltán Szabó
NeurIPS
2023
Kernelized Cumulants: Beyond Kernel Mean Embeddings
Patric Bonnier
,
Harald Oberhauser
,
Zoltan Szabo
UAI
2023
Nyström $m$-Hilbert-Schmidt Independence Criterion
Florian Kalinke
,
Zoltán Szabó
ICML
2022
Functional Output Regression with Infimal Convolution: Exploring the Huber and $ε$-Insensitive Losses
Alex Lambert
,
Dimitri Bouche
,
Zoltan Szabo
,
Florence D’Alché-Buc
JMLR
2022
Handling Hard Affine SDP Shape Constraints in RKHSs
Pierre-Cyril Aubin-Frankowski
,
Zoltan Szabo
NeurIPS
2020
Hard Shape-Constrained Kernel Machines
Pierre-Cyril Aubin-Frankowski
,
Zoltan Szabo
JMLR
2020
Orlicz Random Fourier Features
Linda Chamakh
,
Emmanuel Gobet
,
Zoltán Szabó
ICMLW
2019
A Functional Extension of Multi-Output Learning
Alex Lambert
,
Romain Brault
,
Zoltan Szabo
,
Florence d'Alche-Buc
AISTATS
2019
Infinite Task Learning in RKHSs
Romain Brault
,
Alex Lambert
,
Zoltan Szabo
,
Maxime Sangnier
,
Florence d’Alche-Buc
ICML
2019
MONK Outlier-Robust Mean Embedding Estimation by Median-of-Means
Matthieu Lerasle
,
Zoltan Szabo
,
Timothée Mathieu
,
Guillaume Lecue
AISTATS
2019
On Kernel Derivative Approximation with Random Fourier Features
Zoltan Szabo
,
Bharath Sriperumbudur
NeurIPS
2017
A Linear-Time Kernel Goodness-of-Fit Test
Wittawat Jitkrittum
,
Wenkai Xu
,
Zoltan Szabo
,
Kenji Fukumizu
,
Arthur Gretton
ICML
2017
An Adaptive Test of Independence with Analytic Kernel Embeddings
Wittawat Jitkrittum
,
Zoltán Szabó
,
Arthur Gretton
NeurIPS
2016
Interpretable Distribution Features with Maximum Testing Power
Wittawat Jitkrittum
,
Zoltán Szabó
,
Kacper P Chwialkowski
,
Arthur Gretton
JMLR
2016
Learning Theory for Distribution Regression
Zoltán Szabó
,
Bharath K. Sriperumbudur
,
Barnabás Póczos
,
Arthur Gretton
NeurIPS
2015
Bayesian Manifold Learning: The Locally Linear Latent Variable Model (LL-LVM)
Mijung Park
,
Wittawat Jitkrittum
,
Ahmad Qamar
,
Zoltan Szabo
,
Lars Buesing
,
Maneesh Sahani
NeurIPS
2015
Gradient-Free Hamiltonian Monte Carlo with Efficient Kernel Exponential Families
Heiko Strathmann
,
Dino Sejdinovic
,
Samuel Livingstone
,
Zoltan Szabo
,
Arthur Gretton
UAI
2015
Kernel-Based Just-in-Time Learning for Passing Expectation Propagation Messages
Wittawat Jitkrittum
,
Arthur Gretton
,
Nicolas Heess
,
S. M. Ali Eslami
,
Balaji Lakshminarayanan
,
Dino Sejdinovic
,
Zoltán Szabó
NeurIPS
2015
Optimal Rates for Random Fourier Features
Bharath Sriperumbudur
,
Zoltan Szabo
AISTATS
2015
Two-Stage Sampled Learning Theory on Distributions
Zoltán Szabó
,
Arthur Gretton
,
Barnabás Póczos
,
Bharath K. Sriperumbudur
MLOSS
2014
Information Theoretical Estimators Toolbox
Zoltán Szabó
ECCV
2014
Spatio-Temporal Event Classification Using Time-Series Kernel Based Structured Sparsity
László A. Jeni
,
András Lörincz
,
Zoltán Szabó
,
Jeffrey F. Cohn
,
Takeo Kanade
CVPRW
2013
Emotional Expression Classification Using Time-Series Kernels
András Lörincz
,
László Attila Jeni
,
Zoltán Szabó
,
Jeffrey F. Cohn
,
Takeo Kanade
CVPR
2011
Online Group-Structured Dictionary Learning
Zoltán Szabó
,
Barnabás Póczos
,
András Lörincz
JMLR
2007
Undercomplete Blind Subspace Deconvolution
Zoltán Szabó
,
Barnabás Póczos
,
András Lőrincz
IJCAI
1987
Inductive Inference on the Base of Fixed Point Theory
Tamás Gergely
,
Zoltán Szabó