Talwar, Kunal

47 publications

ICLR 2025 Adaptive Batch Size for Privately Finding Second-Order Stationary Points Daogao Liu, Kunal Talwar
NeurIPS 2025 Enabling Differentially Private Federated Learning for Speech Recognition: Benchmarks, Adaptive Optimizers, and Gradient Clipping Martin Pelikan, Sheikh Shams Azam, Vitaly Feldman, Jan Silovsky, Kunal Talwar, Christopher Brinton, Tatiana Likhomanenko
ICML 2025 Faster Rates for Private Adversarial Bandits Hilal Asi, Vinod Raman, Kunal Talwar
ICML 2025 Improved Sample Complexity for Private Nonsmooth Nonconvex Optimization Guy Kornowski, Daogao Liu, Kunal Talwar
NeurIPS 2025 Instance-Optimality for Private KL Distribution Estimation Jiayuan Ye, Vitaly Feldman, Kunal Talwar
ICML 2025 Local Pan-Privacy for Federated Analytics Vitaly Feldman, Audra Mcmillan, Guy N. Rothblum, Kunal Talwar
NeurIPS 2025 PREAMBLE: Private and Efficient Aggregation via Block Sparse Vectors Hilal Asi, Vitaly Feldman, Hannah Keller, Guy N. Rothblum, Kunal Talwar
NeurIPS 2024 Instance-Optimal Private Density Estimation in the Wasserstein Distance Vitaly Feldman, Audra McMillan, Satchit Sivakumar, Kunal Talwar
NeurIPS 2024 Private Online Learning via Lazy Algorithms Hilal Asi, Tomer Koren, Daogao Liu, Kunal Talwar
ICML 2024 Private Vector Mean Estimation in the Shuffle Model: Optimal Rates Require Many Messages Hilal Asi, Vitaly Feldman, Jelani Nelson, Huy Nguyen, Kunal Talwar, Samson Zhou
NeurIPS 2024 Private and Personalized Frequency Estimation in a Federated Setting Amrith Setlur, Vitaly Feldman, Kunal Talwar
ICMLW 2023 Differentially Private Heavy Hitters Using Federated Analytics Karan Chadha, Junye Chen, John Duchi, Vitaly Feldman, Hanieh Hashemi, Omid Javidbakht, Audra McMillan, Kunal Talwar
NeurIPS 2023 Fast Optimal Locally Private Mean Estimation via Random Projections Hilal Asi, Vitaly Feldman, Jelani Nelson, Huy Nguyen, Kunal Talwar
NeurIPSW 2023 Federated Learning for Speech Recognition: Revisiting Current Trends Towards Large-Scale ASR Sheikh Shams Azam, Martin Pelikan, Vitaly Feldman, Kunal Talwar, Jan Silovsky, Tatiana Likhomanenko
ICML 2023 Near-Optimal Algorithms for Private Online Optimization in the Realizable Regime Hilal Asi, Vitaly Feldman, Tomer Koren, Kunal Talwar
COLT 2023 Private Online Prediction from Experts: Separations and Faster Rates Hilal Asi, Vitaly Feldman, Tomer Koren, Kunal Talwar
NeurIPSW 2023 Private and Personalized Histogram Estimation in a Federated Setting Amrith Setlur, Vitaly Feldman, Kunal Talwar
COLT 2023 Resolving the Mixing Time of the Langevin Algorithm to Its Stationary Distribution for Log-Concave Sampling Jason Altschuler, Kunal Talwar
NeurIPS 2022 FLAIR: Federated Learning Annotated Image Repository Congzheng Song, Filip Granqvist, Kunal Talwar
NeurIPS 2022 Mean Estimation with User-Level Privacy Under Data Heterogeneity Rachel Cummings, Vitaly Feldman, Audra McMillan, Kunal Talwar
ICML 2022 Optimal Algorithms for Mean Estimation Under Local Differential Privacy Hilal Asi, Vitaly Feldman, Kunal Talwar
ICML 2022 Practical Almost-Linear-Time Approximation Algorithms for Hybrid and Overlapping Graph Clustering Lorenzo Orecchia, Konstantinos Ameranis, Charalampos Tsourakakis, Kunal Talwar
NeurIPS 2022 Privacy of Noisy Stochastic Gradient Descent: More Iterations Without More Privacy Loss Jason Altschuler, Kunal Talwar
ICML 2022 Private Frequency Estimation via Projective Geometry Vitaly Feldman, Jelani Nelson, Huy Nguyen, Kunal Talwar
NeurIPS 2022 Subspace Recovery from Heterogeneous Data with Non-Isotropic Noise John C. Duchi, Vitaly Feldman, Lunjia Hu, Kunal Talwar
ICML 2021 Characterizing Structural Regularities of Labeled Data in Overparameterized Models Ziheng Jiang, Chiyuan Zhang, Kunal Talwar, Michael C Mozer
ICML 2021 Lossless Compression of Efficient Private Local Randomizers Vitaly Feldman, Kunal Talwar
NeurIPSW 2021 Mean Estimation with User-Level Privacy Under Data Heterogeneity Rachel Cummings, Vitaly Feldman, Audra McMillan, Kunal Talwar
ICML 2021 Private Adaptive Gradient Methods for Convex Optimization Hilal Asi, John Duchi, Alireza Fallah, Omid Javidbakht, Kunal Talwar
ICML 2021 Private Stochastic Convex Optimization: Optimal Rates in L1 Geometry Hilal Asi, Vitaly Feldman, Tomer Koren, Kunal Talwar
NeurIPS 2020 Faster Differentially Private Samplers via Rényi Divergence Analysis of Discretized Langevin MCMC Arun Ganesh, Kunal Talwar
NeurIPS 2020 On the Error Resistance of Hinge-Loss Minimization Kunal Talwar
NeurIPS 2020 Stability of Stochastic Gradient Descent on Nonsmooth Convex Losses Raef Bassily, Vitaly Feldman, Cristóbal Guzmán, Kunal Talwar
NeurIPS 2020 Stochastic Optimization with Laggard Data Pipelines Naman Agarwal, Rohan Anil, Tomer Koren, Kunal Talwar, Cyril Zhang
COLT 2019 Better Algorithms for Stochastic Bandits with Adversarial Corruptions Anupam Gupta, Tomer Koren, Kunal Talwar
NeurIPS 2019 Computational Separations Between Sampling and Optimization Kunal Talwar
NeurIPS 2019 Private Stochastic Convex Optimization with Optimal Rates Raef Bassily, Vitaly Feldman, Kunal Talwar, Abhradeep Guha Thakurta
ICML 2019 Semi-Cyclic Stochastic Gradient Descent Hubert Eichner, Tomer Koren, Brendan Mcmahan, Nathan Srebro, Kunal Talwar
NeurIPS 2018 Adversarially Robust Generalization Requires More Data Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, Aleksander Madry
ICLR 2018 Learning Differentially Private Recurrent Language Models H. Brendan McMahan, Daniel Ramage, Kunal Talwar, Li Zhang
COLT 2018 Online Learning over a Finite Action Set with Limited Switching Jason M. Altschuler, Kunal Talwar
ICML 2018 Online Linear Quadratic Control Alon Cohen, Avinatan Hasidim, Tomer Koren, Nevena Lazic, Yishay Mansour, Kunal Talwar
ICLR 2018 Scalable Private Learning with PATE Nicolas Papernot, Shuang Song, Ilya Mironov, Ananth Raghunathan, Kunal Talwar, Ulfar Erlingsson
ICLR 2017 Semi-Supervised Knowledge Transfer for Deep Learning from Private Training Data Nicolas Papernot, Martín Abadi, Úlfar Erlingsson, Ian J. Goodfellow, Kunal Talwar
ICLR 2017 Short and Deep: Sketching and Neural Networks Amit Daniely, Nevena Lazic, Yoram Singer, Kunal Talwar
NeurIPS 2015 Nearly Optimal Private LASSO Kunal Talwar, Abhradeep Guha Thakurta, Li Zhang
UAI 2005 On Privacy-Preserving Histograms Shuchi Chawla, Cynthia Dwork, Frank McSherry, Kunal Talwar