ML Anthology
Authors
Search
About
Tamar, Aviv
51 publications
ICML
2025
A Classification View on Meta Learning Bandits
Mirco Mutti
,
Jeongyeol Kwon
,
Shie Mannor
,
Aviv Tamar
NeurIPS
2025
Blindfolded Experts Generalize Better: Insights from Robotic Manipulation and Videogames
Ev Zisselman
,
Mirco Mutti
,
Shelly Francis-Meretzki
,
Elisei Shafer
,
Aviv Tamar
ICLR
2025
EC-Diffuser: Multi-Object Manipulation via Entity-Centric Behavior Generation
Carl Qi
,
Dan Haramati
,
Tal Daniel
,
Aviv Tamar
,
Amy Zhang
NeurIPS
2025
Toward Artificial Palpation: Representation Learning of Touch on Soft Bodies
Zohar Rimon
,
Elisei Shafer
,
Tal Tepper
,
Efrat Shimron
,
Aviv Tamar
ICML
2024
A Bayesian Approach to Online Planning
Nir Greshler
,
David Ben Eli
,
Carmel Rabinovitz
,
Gabi Guetta
,
Liran Gispan
,
Guy Zohar
,
Aviv Tamar
TMLR
2024
DDLP: Unsupervised Object-Centric Video Prediction with Deep Dynamic Latent Particles
Tal Daniel
,
Aviv Tamar
ICLR
2024
Entity-Centric Reinforcement Learning for Object Manipulation from Pixels
Dan Haramati
,
Tal Daniel
,
Aviv Tamar
ICLR
2024
MAMBA: An Effective World Model Approach for Meta-Reinforcement Learning
Zohar Rimon
,
Tom Jurgenson
,
Orr Krupnik
,
Gilad Adler
,
Aviv Tamar
ICML
2024
Test-Time Regret Minimization in Meta Reinforcement Learning
Mirco Mutti
,
Aviv Tamar
ICML
2023
ContraBAR: Contrastive Bayes-Adaptive Deep RL
Era Choshen
,
Aviv Tamar
NeurIPSW
2023
Entity-Centric Reinforcement Learning for Object Manipulation from Pixels
Dan Haramati
,
Tal Daniel
,
Aviv Tamar
NeurIPS
2023
Explore to Generalize in Zero-Shot RL
Ev Zisselman
,
Itai Lavie
,
Daniel Soudry
,
Aviv Tamar
NeurIPSW
2023
Explore to Generalize in Zero-Shot RL
Ev Zisselman
,
Itai Lavie
,
Daniel Soudry
,
Aviv Tamar
CoRL
2023
Fine-Tuning Generative Models as an Inference Method for Robotic Tasks
Orr Krupnik
,
Elisei Shafer
,
Tom Jurgenson
,
Aviv Tamar
CoRL
2023
Hierarchical Planning for Rope Manipulation Using Knot Theory and a Learned Inverse Model
Matan Sudry
,
Tom Jurgenson
,
Aviv Tamar
,
Erez Karpas
ICML
2023
Learning Control by Iterative Inversion
Gal Leibovich
,
Guy Jacob
,
Or Avner
,
Gal Novik
,
Aviv Tamar
ICML
2023
TGRL: An Algorithm for Teacher Guided Reinforcement Learning
Idan Shenfeld
,
Zhang-Wei Hong
,
Aviv Tamar
,
Pulkit Agrawal
ICLRW
2023
TGRL: Teacher Guided Reinforcement Learning Algorithm for POMDPs
Idan Shenfeld
,
Zhang-Wei Hong
,
Aviv Tamar
,
Pulkit Agrawal
NeurIPSW
2022
Learning Control by Iterative Inversion
Gal Leibovich
,
Guy Jacob
,
Or Avner
,
Gal Novik
,
Aviv Tamar
NeurIPS
2022
Meta Reinforcement Learning with Finite Training Tasks - A Density Estimation Approach
Zohar Rimon
,
Aviv Tamar
,
Gilad Adler
AAAI
2022
Regularization Guarantees Generalization in Bayesian Reinforcement Learning Through Algorithmic Stability
Aviv Tamar
,
Daniel Soudry
,
Ev Zisselman
ICML
2022
Unsupervised Image Representation Learning with Deep Latent Particles
Tal Daniel
,
Aviv Tamar
NeurIPSW
2021
Deep Variational Semi-Supervised Novelty Detection
Tal Daniel
,
Thanard Kurutach
,
Aviv Tamar
ICLRW
2021
Offline Meta Learning of Exploration
Ron Dorfman
,
Idan Shenfeld
,
Aviv Tamar
NeurIPS
2021
Offline Meta Reinforcement Learning -- Identifiability Challenges and Effective Data Collection Strategies
Ron Dorfman
,
Idan Shenfeld
,
Aviv Tamar
CVPR
2021
Soft-IntroVAE: Analyzing and Improving the Introspective Variational Autoencoder
Tal Daniel
,
Aviv Tamar
IJCAI
2020
Constrained Policy Improvement for Efficient Reinforcement Learning
Elad Sarafian
,
Aviv Tamar
,
Sarit Kraus
ICML
2020
Hallucinative Topological Memory for Zero-Shot Visual Planning
Kara Liu
,
Thanard Kurutach
,
Christine Tung
,
Pieter Abbeel
,
Aviv Tamar
ICML
2020
Sub-Goal Trees a Framework for Goal-Based Reinforcement Learning
Tom Jurgenson
,
Or Avner
,
Edward Groshev
,
Aviv Tamar
ICML
2019
A Deep Reinforcement Learning Perspective on Internet Congestion Control
Nathan Jay
,
Noga Rotman
,
Brighten Godfrey
,
Michael Schapira
,
Aviv Tamar
ICML
2019
Distributional Multivariate Policy Evaluation and Exploration with the Bellman GAN
Dror Freirich
,
Tzahi Shimkin
,
Ron Meir
,
Aviv Tamar
CoRL
2019
Multi-Agent Reinforcement Learning with Multi-Step Generative Models
Orr Krupnik
,
Igor Mordatch
,
Aviv Tamar
ICLR
2018
Imitation Learning from Visual Data with Multiple Intentions
Aviv Tamar
,
Khashayar Rohanimanesh
,
Yinlam Chow
,
Chris Vigorito
,
Ben Goodrich
,
Michael Kahane
,
Derik Pridmore
NeurIPS
2018
Learning Plannable Representations with Causal InfoGAN
Thanard Kurutach
,
Aviv Tamar
,
Ge Yang
,
Stuart Russell
,
Pieter Abbeel
ICLR
2018
Model-Ensemble Trust-Region Policy Optimization
Thanard Kurutach
,
Ignasi Clavera
,
Yan Duan
,
Aviv Tamar
,
Pieter Abbeel
ICML
2017
Constrained Policy Optimization
Joshua Achiam
,
David Held
,
Aviv Tamar
,
Pieter Abbeel
NeurIPS
2017
Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments
Ryan Lowe
,
Yi Wu
,
Aviv Tamar
,
Jean Harb
,
OpenAI Pieter Abbeel
,
Igor Mordatch
NeurIPS
2017
Shallow Updates for Deep Reinforcement Learning
Nir Levine
,
Tom Zahavy
,
Daniel J Mankowitz
,
Aviv Tamar
,
Shie Mannor
IJCAI
2017
Value Iteration Networks
Aviv Tamar
,
Yi Wu
,
Garrett Thomas
,
Sergey Levine
,
Pieter Abbeel
AAAI
2016
Generalized Emphatic Temporal Difference Learning: Bias-Variance Analysis
Assaf Hallak
,
Aviv Tamar
,
Rémi Munos
,
Shie Mannor
JMLR
2016
Learning the Variance of the Reward-to-Go
Aviv Tamar
,
Dotan Di Castro
,
Shie Mannor
NeurIPS
2016
Value Iteration Networks
Aviv Tamar
,
Yi Wu
,
Garrett Thomas
,
Sergey Levine
,
Pieter Abbeel
FnTML
2015
Bayesian Reinforcement Learning: A Survey
Mohammad Ghavamzadeh
,
Shie Mannor
,
Joelle Pineau
,
Aviv Tamar
AAAI
2015
Optimizing the CVaR via Sampling
Aviv Tamar
,
Yonatan Glassner
,
Shie Mannor
NeurIPS
2015
Policy Gradient for Coherent Risk Measures
Aviv Tamar
,
Yinlam Chow
,
Mohammad Ghavamzadeh
,
Shie Mannor
NeurIPS
2015
Risk-Sensitive and Robust Decision-Making: A CVaR Optimization Approach
Yinlam Chow
,
Aviv Tamar
,
Shie Mannor
,
Marco Pavone
ICML
2014
Scaling up Robust MDPs Using Function Approximation
Aviv Tamar
,
Shie Mannor
,
Huan Xu
ICML
2013
Temporal Difference Methods for the Variance of the Reward to Go
Aviv Tamar
,
Dotan Di Castro
,
Shie Mannor
JMLR
2012
Integrating a Partial Model into Model Free Reinforcement Learning
Aviv Tamar
,
Dotan Di Castro
,
Ron Meir
ICML
2012
Policy Gradients with Variance Related Risk Criteria
Dotan Di Castro
,
Aviv Tamar
,
Shie Mannor
ICML
2011
Integrating Partial Model Knowledge in Model Free RL Algorithms
Aviv Tamar
,
Dotan Di Castro
,
Ron Meir