ML Anthology
Authors
Search
About
Tarlow, Daniel
51 publications
ICLRW
2024
Experts Don't Cheat: Learning What You Don't Know by Predicting Pairs
Daniel D. Johnson
,
Daniel Tarlow
,
David Duvenaud
,
Chris J. Maddison
ICML
2024
Experts Don’t Cheat: Learning What You Don’t Know by Predicting Pairs
Daniel D. Johnson
,
Daniel Tarlow
,
David Duvenaud
,
Chris J. Maddison
NeurIPSW
2024
Unlearning In- vs. Out-of-Distribution Data in LLMs Under Gradient-Based Methods
Teodora Baluta
,
Pascal Lamblin
,
Daniel Tarlow
,
Fabian Pedregosa
,
Gintare Karolina Dziugaite
ICML
2023
R-U-SURE? Uncertainty-Aware Code Suggestions by Maximizing Utility Across Random User Intents
Daniel D. Johnson
,
Daniel Tarlow
,
Christian Walder
ICML
2023
Repository-Level Prompt Generation for Large Language Models of Code
Disha Shrivastava
,
Hugo Larochelle
,
Daniel Tarlow
ICLR
2023
Static Prediction of Runtime Errors by Learning to Execute Programs with External Resource Descriptions
David Bieber
,
Rishab Goel
,
Dan Zheng
,
Hugo Larochelle
,
Daniel Tarlow
ICMLW
2022
Repository-Level Prompt Generation for Large Language Models of Code
Disha Shrivastava
,
Hugo Larochelle
,
Daniel Tarlow
ICLRW
2022
Static Prediction of Runtime Errors by Learning to Execute Programs with External Resource Descriptions
David Bieber
,
Rishab Goel
,
Dan Zheng
,
Hugo Larochelle
,
Daniel Tarlow
ICMLW
2021
Beyond In-Place Corruption: Insertion and Deletion in Denoising Probabilistic Models
Daniel D. Johnson
,
Jacob Austin
,
Rianne van den Berg
,
Daniel Tarlow
NeurIPS
2021
Learning Generalized Gumbel-Max Causal Mechanisms
Guy Lorberbom
,
Daniel D. Johnson
,
Chris J Maddison
,
Daniel Tarlow
,
Tamir Hazan
NeurIPS
2021
Learning to Combine Per-Example Solutions for Neural Program Synthesis
Disha Shrivastava
,
Hugo Larochelle
,
Daniel Tarlow
NeurIPS
2021
PLUR: A Unifying, Graph-Based View of Program Learning, Understanding, and Repair
Zimin Chen
,
Vincent J Hellendoorn
,
Pascal Lamblin
,
Petros Maniatis
,
Pierre-Antoine Manzagol
,
Daniel Tarlow
,
Subhodeep Moitra
NeurIPS
2021
Structured Denoising Diffusion Models in Discrete State-Spaces
Jacob Austin
,
Daniel D. Johnson
,
Jonathan Ho
,
Daniel Tarlow
,
Rianne van den Berg
NeurIPS
2020
Direct Policy Gradients: Direct Optimization of Policies in Discrete Action Spaces
Guy Lorberbom
,
Chris J Maddison
,
Nicolas Heess
,
Tamir Hazan
,
Daniel Tarlow
NeurIPS
2020
Gradient Estimation with Stochastic SoftMax Tricks
Max Paulus
,
Dami Choi
,
Daniel Tarlow
,
Andreas Krause
,
Chris J Maddison
ICLR
2020
Learning Execution Through Neural Code Fusion
Zhan Shi
,
Kevin Swersky
,
Daniel Tarlow
,
Parthasarathy Ranganathan
,
Milad Hashemi
NeurIPS
2020
Learning Graph Structure with a Finite-State Automaton Layer
Daniel Johnson
,
Hugo Larochelle
,
Daniel Tarlow
NeurIPS
2020
Learning to Execute Programs with Instruction Pointer Attention Graph Neural Networks
David Bieber
,
Charles A. Sutton
,
Hugo Larochelle
,
Daniel Tarlow
NeurIPSW
2020
On-the-Fly Adaptation of Source Code Models
Disha Shrivastava
,
Hugo Larochelle
,
Daniel Tarlow
ICLR
2017
Batch Policy Gradient Methods for Improving Neural Conversation Models
Kirthevasan Kandasamy
,
Yoram Bachrach
,
Ryota Tomioka
,
Daniel Tarlow
,
David Carter
ICLR
2017
DeepCoder: Learning to Write Programs
Matej Balog
,
Alexander L. Gaunt
,
Marc Brockschmidt
,
Sebastian Nowozin
,
Daniel Tarlow
ICML
2017
Differentiable Programs with Neural Libraries
Alexander L. Gaunt
,
Marc Brockschmidt
,
Nate Kushman
,
Daniel Tarlow
ICLR
2017
Lifelong Perceptual Programming by Example
Alexander L. Gaunt
,
Marc Brockschmidt
,
Nate Kushman
,
Daniel Tarlow
ICLR
2017
Neural Functional Programming
John K. Feser
,
Marc Brockschmidt
,
Alexander L. Gaunt
,
Daniel Tarlow
ICLR
2017
Neural Program Lattices
Chengtao Li
,
Daniel Tarlow
,
Alexander L. Gaunt
,
Marc Brockschmidt
,
Nate Kushman
CVPR
2016
Fits like a Glove: Rapid and Reliable Hand Shape Personalization
David Joseph Tan
,
Thomas Cashman
,
Jonathan Taylor
,
Andrew Fitzgibbon
,
Daniel Tarlow
,
Sameh Khamis
,
Shahram Izadi
,
Jamie Shotton
ICLR
2016
Gated Graph Sequence Neural Networks
Yujia Li
,
Daniel Tarlow
,
Marc Brockschmidt
,
Richard S. Zemel
ICML
2015
Bimodal Modelling of Source Code and Natural Language
Miltos Allamanis
,
Daniel Tarlow
,
Andrew Gordon
,
Yi Wei
AISTATS
2015
Consensus Message Passing for Layered Graphical Models
Varun Jampani
,
S. M. Ali Eslami
,
Daniel Tarlow
,
Pushmeet Kohli
,
John M. Winn
UAI
2015
Minimizing Expected Losses in Perturbation Models with Multidimensional Parametric Min-Cuts
Adrian Kim
,
Kyomin Jung
,
Yongsub Lim
,
Daniel Tarlow
,
Pushmeet Kohli
NeurIPS
2014
A* Sampling
Chris J Maddison
,
Daniel Tarlow
,
Tom Minka
CVPR
2014
Empirical Minimum Bayes Risk Prediction: How to Extract an Extra Few % Performance from Vision Models with Just Three More Parameters
Vittal Premachandran
,
Daniel Tarlow
,
Dhruv Batra
NeurIPS
2014
Just-in-Time Learning for Fast and Flexible Inference
S. M. Ali Eslami
,
Daniel Tarlow
,
Pushmeet Kohli
,
John Winn
AISTATS
2014
Learning Structured Models with the AUC Loss and Its Generalizations
Nir Rosenfeld
,
Ofer Meshi
,
Daniel Tarlow
,
Amir Globerson
ICML
2014
Structured Generative Models of Natural Source Code
Chris Maddison
,
Daniel Tarlow
CVPR
2013
Exploring Compositional High Order Pattern Potentials for Structured Output Learning
Yujia Li
,
Daniel Tarlow
,
Richard Zemel
NeurIPS
2013
Learning to Pass Expectation Propagation Messages
Nicolas Heess
,
Daniel Tarlow
,
John Winn
ICML
2013
Stochastic K-Neighborhood Selection for Supervised and Unsupervised Learning
Daniel Tarlow
,
Kevin Swersky
,
Laurent Charlin
,
Ilya Sutskever
,
Rich Zemel
UAI
2013
Tighter Linear Program Relaxations for High Order Graphical Models
Elad Mezuman
,
Daniel Tarlow
,
Amir Globerson
,
Yair Weiss
NeurIPS
2012
Cardinality Restricted Boltzmann Machines
Kevin Swersky
,
Ilya Sutskever
,
Daniel Tarlow
,
Richard S. Zemel
,
Ruslan Salakhutdinov
,
Ryan P. Adams
UAI
2012
Fast Exact Inference for Recursive Cardinality Models
Daniel Tarlow
,
Kevin Swersky
,
Richard S. Zemel
,
Ryan Prescott Adams
,
Brendan J. Frey
NeurIPS
2012
Probabilistic N-Choose-K Models for Classification and Ranking
Kevin Swersky
,
Brendan J. Frey
,
Daniel Tarlow
,
Richard S. Zemel
,
Ryan P. Adams
AISTATS
2012
Randomized Optimum Models for Structured Prediction
Daniel Tarlow
,
Ryan Adams
,
Richard Zemel
CVPR
2012
Revisiting Uncertainty in Graph Cut Solutions
Daniel Tarlow
,
Ryan Prescott Adams
AISTATS
2012
Structured Output Learning with High Order Loss Functions
Daniel Tarlow
,
Richard Zemel
ICML
2011
Dynamic Tree Block Coordinate Ascent
Daniel Tarlow
,
Dhruv Batra
,
Pushmeet Kohli
,
Vladimir Kolmogorov
UAI
2011
Graph Cuts Is a Max-Product Algorithm
Daniel Tarlow
,
Inmar E. Givoni
,
Richard S. Zemel
,
Brendan J. Frey
AISTATS
2010
HOP-MAP: Efficient Message Passing with High Order Potentials
Daniel Tarlow
,
Inmar Givoni
,
Richard Zemel
UAI
2008
Flexible Priors for Exemplar-Based Clustering
Daniel Tarlow
,
Richard S. Zemel
,
Brendan J. Frey
ECCV
2008
Unsupervised Learning of Skeletons from Motion
David A. Ross
,
Daniel Tarlow
,
Richard S. Zemel
NeurIPS
2006
Using Combinatorial Optimization Within Max-Product Belief Propagation
Daniel Tarlow
,
Gal Elidan
,
Daphne Koller
,
John C. Duchi